

PubFetcher documentation

A Java command-line tool and library to download and store publications with metadata by combining content from various online resources (Europe PMC, PubMed, PubMed Central, Unpaywall, journal web pages), plus extract content from general web pages.

Contents:

	What is PubFetcher?
	Overview

	Outline

	Install

	Quickstart

	Repo

	Support

	License

	Command-line interface manual
	Logging

	General parameters
	Fetching

	Fetching private

	Simple one-off operations
	Database

	Print a web page

	Scrape rules

	Publication IDs

	Miscellaneous

	Pipeline of operations
	Add IDs

	Filter IDs

	Sort IDs

	Limit IDs

	Remove from database by IDs

	Output IDs

	Get content

	Get content modifiers

	Filter content

	Filter publications

	Filter publication parts

	Filter webpages and docs

	Sort content

	Limit content

	Update citations count

	Put to database

	Remove from database

	Output

	Output modifiers

	Test

	Examples
	Operations with IDs

	Get content

	Loading content

	Limit fetching/loading

	Fetch only some publication parts

	Converting IDs

	Filtering content

	Terminal operations

	Output
	Export to JSON

	Notes
	Limitations

	Output
	Database

	JSON output
	Common

	IDs
	IDs of publications

	URLs of webpages

	URLs of docs

	Contents
	Content of publications

	Content of webpages

	Content of docs

	HTML and plain text output

	Log file
	Analysing logs

	Fetching logic
	Low-level methods
	Getting a HTML document

	Getting a PDF document

	Selecting from the returned HTML document

	Cleaning the returned HTML document

	Multithreaded fetching

	Fetching publications
	Resources
	Europe PMC

	Europe PMC fulltext

	Europe PMC mined

	PubMed XML

	PubMed HTML

	PubMed Central

	DOI resource

	Unpaywall

	Meta

	Links

	Publication types

	Publication parts

	Fetching webpages and docs

	Can fetch

	Scraping rules
	Scraping

	Rules in YAML
	Journals YAML
	regex

	site

	javascript

	Webpages YAML

	Testing of rules

	Programming reference
	Package pubfetcher.core.common

	Package pubfetcher.core.db (and subpackages)

	Package pubfetcher.core.fetching

	Package pubfetcher.core.scrape

	Package pubfetcher.cli

	Configuration resources/log4j2.xml

	Ideas for future
	Structure changes

	Logic changes

	Extra sources

	Extra extraction

	Database

	Scraping

	Meta

	Misc new stuff

What is PubFetcher?

A Java command-line tool and library to download and store publications with metadata by combining content from various online resources (Europe PMC, PubMed, PubMed Central, Unpaywall, journal web pages), plus extract content from general web pages.

Overview

PubFetcher used to be part of EDAMmap [https://github.com/edamontology/edammap] until its functionality was determined to be potentially useful on its own, thus PubFetcher is now an independently usable application. However, its features and structure are still influenced by EDAMmap, for example the supported publication resources are mainly from the biomedical and life sciences fields and getting the list of authors of a publication is currently not supported (as it’s not needed in EDAMmap). Also, the functionality of extracting content from general web pages is geared towards web pages containing software tools descriptions and documentation (GitHub, BioConductor, etc), as PubFetcher has built-in rules to extract from these pages and it has fields to store the software license and programming language.

Ideally, all scientific literature would be open and easily accessible through one interface for text mining and other purposes. One interface for getting publications is Europe PMC [https://europepmc.org/], which PubFetcher uses as its main resource. In the middle of 2018, Europe PMC was able to provide almost all of the titles, around 95% of abstracts, 50% of full texts and only 10% of user-assigned keywords for the publications present in the bio.tools [https://bio.tools/] registry at that time. While some articles don’t have keywords and some full texts can’t be obtained, many of the gaps can be filled by other resources. And sometimes we need the maximum amount of content about each publication for better results, thus the need for PubFetcher, that extracts and combines data from these different resources.

The speed of downloading, when multithreading is enabled, is roughly one publication per second. This limitation, along with the desire to not overburden the used APIs and publisher sites, means that PubFetcher is best used for medium-scale processing of publications, where the number of entries is in the thousands and not in the millions, but where the largest amount of completeness for these few thousand publications is desired. If millions of publications are required, then it is better to restrict oneself to the Open Access subset, which can be downloaded in bulk: https://europepmc.org/downloads.

In addition to the main content of a publication (title, abstract and full text), PubFetcher supports getting different keywords about the publication: the user-assigned keywords, the MeSH terms as assigned in PubMed and EFO terms and GO terms as mined from the full text by Europe PMC. Each publication has up to three identificators: a PMID, a PMCID and a DOI. In addition, different metadata (found from the different resources) about a publication is saved, like whether the article is Open Access, the journal where it was published, the publication date, etc. The source of each publication part is remembered, with content from a higher confidence resource potentially overwriting the current content. It is possible to fetch only some publication parts (thus avoiding querying some resources) and there is an algorithm to determine if an already existing entry should be refetched or is it complete enough. Fetching and extracting of content is done using various Java libraries with support for JavaScript and PDF files. The downloaded publications can be persisted to disk to a key-value store for later analysis. A number of built-in rules are included (along with tests) for scraping publication parts from publisher sites, but additional rules can also be defined. Currently, there is support for around 50 publishers of journals and 25 repositories of tools and tools’ metadata and documentation and around 750 test cases for the rules have been defined. If no rules are defined for a given site, then automatic cleaning is applied to get the main content of the page.

PubFetcher has an extensive command-line tool to use all of its functionality. It contains a few helper operations, but the main use is the construction of a simple pipeline for querying, fetching and outputting of publications and general and documentation web pages: first IDs of interest are specified/loaded and filtered, then corresponding content fetched/loaded and filtered, and last it is possible to output the results or store them to a database. Among other functionality, content and all the metadata can be output in HTML or plain text, but also exported to JSON. All fetching operations can be influenced by a few general parameters. Progress along with error messages is logged to the console and to a log file, if specified. The command-line tool can be extended, for example to add new ways of loading IDs.

Outline

	Command-line interface manual documents all parameters of the command-line interface, accompanied by many examples

	Output describes different outputs: the database, the log file and the JSON output, through which the structure of publications, webpages and docs is also explained

	Fetching logic deals with fetching logic, describing for example the content fetching methods and the resources and filling logic of publication parts

	Scraping rules is about scraping rules and how to define and test them

	Programming reference gives a short overview about the source code for those wanting to use the PubFetcher library

	Ideas for future contains ideas how to improve PubFetcher

Install

Installation instructions can be found in the project’s GitHub repo at INSTALL [https://github.com/edamontology/pubfetcher/blob/master/INSTALL.md].

Quickstart

Create a new empty database
$ java -jar pubfetcher-cli-<version>.jar -db-init database.db
Fetch two publications and store them to the database
$ java -jar pubfetcher-cli-<version>.jar -pub 10.1093/nar/gkz369 10.1101/692905 -db-fetch-end database.db
Print the fetched publications
$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db -db database.db -out

For many more examples, see Examples.

Repo

PubFetcher is hosted at https://github.com/edamontology/pubfetcher.

Support

Should you need help installing or using PubFetcher, please get in touch with Erik Jaaniso (the lead developer) directly via the tracker [https://github.com/edamontology/pubfetcher/issues].

License

PubFetcher is free and open-source software licensed under the GNU General Public License v3.0, as seen in COPYING [https://github.com/edamontology/pubfetcher/blob/master/COPYING].

Command-line interface manual

The CLI of PubFetcher is provided by a Java executable packaged in a .jar file. If a Java Runtime Environment (JRE) capable of running version 8 of Java is installed on the system, then this .jar file can be executed using the java command. For example, executing PubFetcher-CLI with the parameter -h or --help outputs a list of all possible parameters:

$ java -jar path/to/pubfetcher-cli-<version>.jar --help

Parsing of command line parameters is provided by JCommander [http://jcommander.org/].

Logging

	Parameter

	Description

	-l or --log

	The path of the log file

PubFetcher-CLI will output its log to the console (to stderr). With the --log parameter we can specify a text file location where this same log will be output. It will not be coloured as the console output, but will include a few DEBUG level messages omitted in the console (this includes the very first line listing all parameters the program was run with).

If the specified file already exists, then new log messages will be appended to its end. In case of a new log file creation, any missing parent directories will be created as necessary.

General parameters

Parameters affecting many other operations specified below. These parameters can be supplied to PubFetcher externally through programmatic means. When supplied on the command line (of PubFetcher-CLI), then two dashes (--) have to be added in front of the parameter names specified in the two following tables.

Fetching

Parameters that affect many of the operations specified further below, for example --timeout changes the timeouts of all attempted network connections. The cooldown and retryLimit parameters affect if we can fetch (or rather, refetch) a publication or webpage. The minimum length and size parameters affect whether an entry is usable and final.

	Parameter

	Default

	Min

	Description

	emptyCooldown

	720

	
	If that many minutes have passed since last fetching attempt of an empty publication or empty webpage, then fetching can be attempted again, resetting the retryCounter. Setting to 0 means fetching of empty database entries will always be attempted again. Setting to a negative value means refetching will never be done (and retryCounter never reset) only because the entry is empty.

	nonFinalCooldown

	10080

	
	If that many minutes have passed since last fetching attempt of a non-final publication or non-final webpage (which are not empty), then fetching can be attempted again, resetting the retryCounter. Setting to 0 means fetching of non-final database entries will always be attempted again. Setting to a negative value means refetching will never be done (and retryCounter never reset) only because the entry is non-final.

	fetchExceptionCooldown

	1440

	
	If that many minutes have passed since last fetching attempt of a publication or webpage with a fetchException, then fetching can be attempted again, resetting the retryCounter. Setting to 0 means fetching of database entries with fetchException will always be attempted again. Setting to a negative value means refetching will never be done (and retryCounter never reset) only because the fetchException of the entry is true.

	retryLimit

	3

	
	How many times can fetching be retried for an entry that is still empty, non-final or has a fetchException after the initial attempt. Setting to 0 will disable retrying, unless the retryCounter is reset by a cooldown in which case one initial attempt is allowed again. Setting to a negative value will disable this upper limit.

	titleMinLength

	4

	0

	Minimum length of a usable publication title

	keywordsMinSize

	2

	0

	Minimum size of a usable publication keywords/MeSH list

	minedTermsMinSize

	1

	0

	Minimum size of a usable publication EFO/GO terms list

	abstractMinLength

	200

	0

	Minimum length of a usable publication abstract

	fulltextMinLength

	2000

	0

	Minimum length of a usable publication fulltext

	webpageMinLength

	50

	0

	Minimum length of a usable webpage combined title and content

	webpageMinLengthJavascript

	200

	0

	If the length of a the whole web page text fetched without JavaScript is below the specified limit and no scraping rules are found for the corresponding URL, then refetching using JavaScript support will be attempted

	timeout

	15000

	0

	Connect and read timeout of connections, in milliseconds

Fetching private

These are like Fetching parameters in that they have a general effect, e.g. setting --userAgent changes the HTTP User-Agent of all HTTP connections. However, Fetching parameters are such parameters that we might want to expose via a web API to be changeable by a client (when extending or using the PubFetcher library), but the parameters below should probably only be configured locally and as such are separated in code.

	Parameter

	Description

	europepmcEmail

	E-mail to send to the Europe PMC API

	oadoiEmail

	E-mail to send to the oaDOI (Unpaywall) API

	userAgent

	HTTP User-Agent

	journalsYaml

	YAML file containing custom journals scrape rules to add to default ones

	webpagesYaml

	YAML file containing custom webpages scrape rules to add to default ones

Simple one-off operations

Some simple operations (represented by the parameters with one dash (-) below), that mostly should by the sole parameter supplied to PubFetcher, when used.

Database

A collection of one-off database operations on a single database file.

	Parameter

	Parameter args

	Description

	-db-init

	<database file>

	Create an empty database file. This is the only way to make new databases.

	-db-commit

	<database file>

	Commit all pending changes by merging all WAL files to the main database file. This has only an effect if WAL files are present beside the database file after an abrupt termination of the program, as normally committing is done in code where required.

	-db-compact

	<database file>

	Compaction reclaims space by removing deprecated records (left over after database updates)

	-db-publications-size

	<database file>

	Output the number of publications stored in the database to stdout

	-db-webpages-size

	<database file>

	Output the number of webpages stored in the database to stdout

	-db-docs-size

	<database file>

	Output the number of docs stored in the database to stdout

	-db-publications-map

	<database file>

	Output all PMID to primary ID, PMCID to primary ID and DOI to primary ID mapping pairs stored in the database to stdout

	-db-publications-map-reverse

	<database file>

	Output all mappings from primary ID to the triple [PMID, PMCID, DOI] stored in the database to stdout

Print a web page

Methods for fetching and outputting a web page. Affected by timeout and userAgent parameters, -fetch-webpage-selector also by webpageMinLength and webpageMinLengthJavascript.

	Parameter

	Parameter args

	Description

	-fetch-document

	<url>

	Fetch a web page (without JavaScript support, i.e. using jsoup) and output its raw HTML to stdout

	-fetch-document-javascript

	<url>

	Fetch a web page (with JavaScript support, i.e. using HtmlUnit) and output its raw HTML to stdout

	-post-document

	<url> <param name> <param value> <param name> <param value> …

	Fetch a web resource using HTTP POST. The first parameter specifies the resource URL and is followed by the request data in the form of name/value pairs, with names and values separated by spaces.

	-fetch-webpage-selector

	<url> <title selector> <content selector> <javascript support>

	Fetch a webpage and output it to stdout in the format specified by the Output modifiers --plain and --format. Works also for PDF files. Title and content args are CSS selectors as supported by jsoup. If the title selector is an empty string, then the page title will be the text content of the document’s <title> element. If the content selector is an empty string, then content will be the automatically cleaned whole text content parsed from the HTML/XML. If javascript arg is true, then fetching will be done using JavaScript support (HtmlUnit), if false, then without JavaScript (jsoup). If javascript arg is empty, then fetching will be done without JavaScript and if the text length of the returned document is less than webpageMinLengthJavascript or if a <noscript> tag is found in it, a second fetch will happen with JavaScript support.

Scrape rules

Print requested parts of currently effective scraping rules loaded from default or custom scrape rules YAML files.

	Parameter

	Parameter args

	Description

	-scrape-site

	<url>

	Output found journal site name for the given URL to stdout (or null if not found or URL invalid)

	-scrape-selector

	<url> <ScrapeSiteKey>

	Output the CSS selector used for extracting the publication part represented by ScrapeSiteKey from the given URL

	-scrape-javascript

	<url>

	Output true or false depending on whether JavaScript will be used or not for fetching the given publication URL

	-scrape-webpage

	<url>

	Output all CSS selectors used for extracting webpage content and metadata from the given URL (or null if not found or URL invalid)

Publication IDs

Simple operations on publication IDs, with result output to stdout.

	Parameter

	Parameter args

	Description

	-is-pmid

	<string>

	Output true or false depending on whether the given string is a valid PMID or not

	-is-pmcid

	<string>

	Output true or false depending on whether the given string is a valid PMCID or not

	-extract-pmcid

	<pmcid>

	Remove the prefix “PMC” from a PMCID and output the rest. Output an empty string if the given string is not a valid PMCID.

	-is-doi

	<string>

	Output true or false depending on whether the given string is a valid DOI or not

	-normalise-doi

	<doi>

	Remove any valid prefix (e.g. “https://doi.org/”, “doi:”) from a DOI and output the rest, converting letters from the 7-bit ASCII set to uppercase. The validity of the input DOI is not checked.

	-extract-doi-registrant

	<doi>

	Output the registrant ID of a DOI (the substring after “10.” and before “/”). Output an empty string if the given string is not a valid DOI.

Miscellaneous

Methods to test the escaping of HTML entities as done by PubFetcher (necessary when outputting raw input to HTML format) and test the validity of publication IDs and webpage URLs.

	Parameter

	Parameter args

	Description

	-escape-html

	<string>

	Output the result of escaping necessary characters in the given string such that it can safely by used as text in a HTML document (without the string interacting with the document’s markup)

	-escape-html-attribute

	<string>

	Output the result of escaping necessary characters in the given string such that it can safely by used as an HTML attribute value (without the string interacting with the document’s markup)

	-check-publication-id

	<string>

	Given one publication ID, output it in publication IDs form (<pmid>\t<pmcid>\t<doi>) if it is a valid PMID, PMCID or DOI, or throw an exception if it is an invalid publication ID

	-check-publication-ids

	<pmid> <pmcid> <doi>

	Given a PMID, a PMCID and a DOI, output them in publication IDs form (<pmid>\t<pmcid>\t<doi>) if given IDs are a valid PMID, PMCID and DOI, or throw an exception if at least one is invalid

	-check-url

	<string>

	Given a webpage ID (i.e. a URL), output the parsed URL, or throw an exception if it is an invalid URL

Pipeline of operations

A simple pipeline that allows for more complex querying, fetching and outputting of publications , webpages and docs : first IDs of interest are specified/loaded and filtered, then corresponding content fetched/loaded and filtered, and last it is possible to output or store the results. Component operations of the pipeline are specified as command-line parameters with one dash (-). In addition, there are some parameters modifying some aspect of the pipeline, these will have two dashes (--). The Fetching and Fetching private parameters will also have an effect (on fetching and determining the finality of content).

Add IDs

publication IDs, webpage URLs and doc URLs can be specified on the command-line and can be loaded from text and database files. The resultant list of IDs is actually a set, meaning that if duplicate IDs are encountered, they’ll be ignored and not added to the list.

	Parameter

	Parameter args

	Description

	-pub

	<string> <string> …

	A space-separated list of publication IDs (either PMID, PMCID or DOI) to add

	-web

	<string> <string> …

	A space-separated list of webpage URLs to add

	-doc

	<string> <string> …

	A space-separated list of doc URLs to add

	-pub-file

	<text file> …

	Load all publication IDs from the specified list of text files containing publication IDs in the form <pmid>\t<pmcid>\t<doi>, one per line. Empty lines and lines beginning with # are ignored.

	-web-file

	<text file> …

	Load all webpage URLs from the specified list of text files containing webpage URLs, one per line. Empty lines and lines beginning with # are ignored.

	-doc-file

	<text file> …

	Load all doc URLs from the specified list of text files containing doc URLs, one per line. Empty lines and lines beginning with # are ignored.

	-pub-db

	<database file> …

	Load all publication IDs found in the specified database files

	-web-db

	<database file> …

	Load all webpage URLs found in the specified database files

	-doc-db

	<database file> …

	Load all doc URLs found in the specified database files

Filter IDs

Conditions that publication IDs, webpage URLs and doc URLs must meet to be retained in the pipeline.

	Parameter

	Parameter args

	Description

	-has-pmid

	
	Only keep publication IDs whose PMID is present

	-not-has-pmid

	
	Only keep publication IDs whose PMID is empty

	-pmid

	<regex>

	Only keep publication IDs whose PMID has a match with the given regular expression

	-not-pmid

	<regex>

	Only keep publication IDs whose PMID does not have a match with the given regular expression

	-pmid-url

	<regex>

	Only keep publication IDs whose PMID provenance URL has a match with the given regular expression

	-not-pmid-url

	<regex>

	Only keep publication IDs whose PMID provenance URL does not have a match with the given regular expression

	-has-pmcid

	
	Only keep publication IDs whose PMCID is present

	-not-has-pmcid

	
	Only keep publication IDs whose PMCID is empty

	-pmcid

	<regex>

	Only keep publication IDs whose PMCID has a match with the given regular expression

	-not-pmcid

	<regex>

	Only keep publication IDs whose PMCID does not have a match with the given regular expression

	-pmcid-url

	<regex>

	Only keep publication IDs whose PMCID provenance URL has a match with the given regular expression

	-not-pmcid-url

	<regex>

	Only keep publication IDs whose PMCID provenance URL does not have a match with the given regular expression

	-has-doi

	
	Only keep publication IDs whose DOI is present

	-not-has-doi

	
	Only keep publication IDs whose DOI is empty

	-doi

	<regex>

	Only keep publication IDs whose DOI has a match with the given regular expression

	-not-doi

	<regex>

	Only keep publication IDs whose DOI does not have a match with the given regular expression

	-doi-url

	<regex>

	Only keep publication IDs whose DOI provenance URL has a match with the given regular expression

	-not-doi-url

	<regex>

	Only keep publication IDs whose DOI provenance URL does not have a match with the given regular expression

	-doi-registrant

	<string> <string> …

	Only keep publication IDs whose DOI registrant code (the bit after “10.” and before “/”) is present in the given list of strings

	-not-doi-registrant

	<string> <string> …

	Only keep publication IDs whose DOI registrant code (the bit after “10.” and before “/”) is not present in the given list of strings

	-url

	<regex>

	Only keep webpage URLs and doc URLs that have a match with the given regular expression

	-not-url

	<regex>

	Only keep webpage URLs and doc URLs that don’t have a match with the given regular expression

	-url-host

	<string> <string> …

	Only keep webpage URLs and doc URLs whose host part is present in the given list of strings (comparison is done case-insensitively and “www.” is removed)

	-not-url-host

	<string> <string> …

	Only keep webpage URLs and doc URLs whose host part is not present in the given list of strings (comparison is done case-insensitively and “www.” is removed)

	-in-db

	<database file>

	Only keep publication IDs, webpage URLs and doc URLs that are present in the given database file

	-not-in-db

	<database file>

	Only keep publication IDs, webpage URLs and doc URLs that are not present in the given database file

Sort IDs

Sorting of added and filtered IDs. publication IDs are first sorted by PMID, then by PMCID (if PMID is absent), then by DOI (if PMID and PMCID are absent). Internally, the PMID, the PMCID and the DOI registrant are sorted numerically, DOIs within the same registrant alphabetically. webpage URLs and doc URLs are sorted alphabetically.

	Parameter

	Parameter args

	Description

	-asc-ids

	
	Sort publication IDs, webpage URLs and doc URLs in ascending order

	-desc-ids

	
	Sort publication IDs, webpage URLs and doc URLs is descending order

Limit IDs

Added, filtered and sorted IDs can be limited to a given number of IDs either in the front or back.

	Parameter

	Parameter args

	Description

	-head-ids

	<positive integer>

	Only keep the first given number of publication IDs, webpage URLs and doc URLs

	-tail-ids

	<positive integer>

	Only keep the last given number of publication IDs, webpage URLs and doc URLs

Remove from database by IDs

The resulting list of IDs can be used to remove corresponding entries from a database.

	Parameter

	Parameter args

	Description

	-remove-ids

	<database file>

	From the given database, remove content corresponding to publication IDs, webpage URLs and doc URLs

Output IDs

Outputs the final list of loaded IDs to stdout or the specified text files in the format specified by the Output modifiers --plain and --format. Without --plain publication IDs are output with their corresponding provenance URLs, with --plain these are omitted. webpage URLs and doc URLs are not affected by --plain. Specifying --format as text (the default) and using --plain will output publication IDs in the form <pmid>\t<pmcid>\t<doi>.

	Parameter

	Parameter args

	Description

	-out-ids

	
	Output publication IDs, webpage URLs and doc URLs to stdout in the format specified by the Output modifiers --plain and --format

	-txt-ids-pub

	<file>

	Output publication IDs to the given file in the format specified by the Output modifiers --plain and --format

	-txt-ids-web

	<file>

	Output webpage URLs to the given file in the format specified by --format

	-txt-ids-doc

	<file>

	Output doc URLs to the given file in the format specified by --format

	-count-ids

	
	Output count numbers for publication IDs, webpage URLs and doc URLs to stdout

Get content

Operations to get publications, webpages and docs corresponding to the final list of loaded publication IDs, webpage URLs and doc URLs. Content will be fetched from the Internet, loaded from a database file, or both, with updated content possibly saved back to the database. In case multiple content getting operations are used, first everything with -db is got, then -fetch, -fetch-put, -db-fetch and last -db-fetch-end. The list of entries will have the order in which entries were got, duplicates are allowed. When saved to a database file, duplicates will be merged, in other cases (e.g. when outputting content) duplicates will be present.

	Parameter

	Parameter args

	Description

	-db

	<database file>

	Get publications, webpages and docs from the given database

	-fetch

	
	Fetch publications, webpages and docs from the Internet. All entries for which some fetchException happens are fetched again in the end (this is done only once).

	-fetch-put

	<database file>

	Fetch publications, webpages and docs from the Internet and put each entry in the given database right after it has been fetched, ignoring any filters and overwriting any existing entries with equal IDs/URLs. All entries for which some fetchException happens are fetched and put to the database again in the end (this is done only once).

	-db-fetch

	<database file>

	First, get an entry from the given database (if found), then fetch the entry (if the entry can be fetched), then put the entry back to the database while ignoring any filters (if the entry was updated). All entries which have the fetchException set are got again in the end (this is done only once). This operation is multithreaded (in contrast to -fetch and -fetch-put), with --threads number of threads, thus it should be preferred for larger amounts of content.

	-db-fetch-end

	<database file>

	Like -db-fetch, except no content is kept in memory (saving back to the given database still happens), thus no further processing down the pipeline is possible. This is useful for avoiding large memory usage if only fetching and saving of content to the database is to be done and no further operations on content (like outputting it) are required.

Get content modifiers

Some parameters to influence the behaviour of content getting operations.

	Parameter

	Parameter args

	Default

	Description

	--fetch-part

	<PublicationPartName> …

	
	List of publication parts that will be fetched from the Internet. All other parts will be empty (except the publication IDs which will be filled whenever possible). Fetching of resources not containing any specified parts will be skipped. If used, then --not-fetch-part must not be used. If neither of --fetch-part and --not-fetch-part is used, then all parts will be fetched.

	--not-fetch-part

	<PublicationPartName> …

	
	List of publication parts that will not be fetched from the Internet. All other parts will be fetched. Fetching of resources not containing any not specified parts will be skipped. If used, then --fetch-part must not be used.

	--pre-filter

	
	
	Normally, all content is loaded into memory before filtering specified in Filter content is applied. This option ties the filtering step to the loading/fetching step for each individual entry, discarding entries not passing the filter right away, thus reducing memory usage. As a tradeoff, in case multiple filters are used, it won’t be possible to see in the log how many entries were discarded by each filter.

	--limit

	<positive integer>

	0

	Maximum number of publications, webpages and docs that can be loaded/fetched. In case the limit is applied, the concrete returned content depends on the order it is loaded/fetched, which depends on the order of content getting operations, then on whether there was a fetchException and last on the ordering of received IDs. If the multithreaded -db-fetch is used or a fetchException happen, then the concrete returned content can vary slightly between equal applications of limit. If --pre-filter is also used, then the filters of Filter content will be applied before the limit, otherwise the limit is applied beforehand and the filters can reduce the number of entries further. Set to 0 to disable.

	--threads

	<positive integer>

	8

	Number of threads used for getting content with -db-fetch and -db-fetch-end. Should not be bound by actual processor core count, as mostly threads sit idle, waiting for an answer from a remote host or waiting behind another thread to finish communicating with the same host.

Filter content

Conditions that publications, webpages and docs must meet to be retained in the pipeline. All filters will be ANDed together.

	Parameter

	Parameter args

	Description

	-fetch-time-more

	<ISO-8601 time>

	Only keep publications, webpages and docs whose fetchTime is more than or equal to the given time

	-fetch-time-less

	<ISO-8601 time>

	Only keep publications, webpages and docs whose fetchTime is less than or equal to the given time

	-retry-counter

	<positive integer> …

	Only keep publications, webpages and docs whose retryCounter is equal to one of given counts

	-not-retry-counter

	<positive integer> …

	Only keep publications, webpages and docs whose retryCounter is not equal to any of given counts

	-retry-counter-more

	<positive integer>

	Only keep publications, webpages and docs whose retryCounter is more than the given count

	-retry-counter-less

	<positive integer>

	Only keep publications, webpages and docs whose retryCounter is less than the given count

	-fetch-exception

	
	Only keep publications, webpages and docs with a fetchException

	-not-fetch-exception

	
	Only keep publications, webpages and docs without a fetchException

	-empty

	
	Only keep empty publications, empty webpages and empty docs

	-not-empty

	
	Only keep non-empty publications, non-empty webpages and non-empty docs

	-usable

	
	Only keep usable publications, usable webpages and usable docs

	-not-usable

	
	Only keep non-usable publications, non-usable webpages and non-usable docs

	-final

	
	Only keep final publications, final webpages and final docs

	-not-final

	
	Only keep non-final publications, non-final webpages and non-final docs

	-grep

	<regex>

	Only keep publications, webpages and docs whose whole content (as output using --plain) has a match with the given regular expression

	-not-grep

	<regex>

	Only keep publications, webpages and docs whose whole content (as output using --plain) does not have a match with the given regular expression

Filter publications

Conditions that publications must meet to be retained in the pipeline.

	Parameter

	Parameter args

	Description

	-totally-final

	
	Only keep publications whose content is totally final

	-not-totally-final

	
	Only keep publications whose content is not totally final

	-oa

	
	Only keep publications that are Open Access

	-not-oa

	
	Only keep publications that are not Open Access

	-journal-title

	<regex>

	Only keep publications whose journal title has a match with the given regular expression

	-not-journal-title

	<regex>

	Only keep publications whose journal title does not have a match with the given regular expression

	-journal-title-empty

	
	Only keep publications whose journal title is empty

	-not-journal-title-empty

	
	Only keep publications whose journal title is not empty

	-pub-date-more

	<ISO-8601 time>

	Only keep publications whose publication date is more than or equal to given time (add “T00:00:00Z” to the end to get an ISO-8601 time from a date)

	-pub-date-less

	<ISO-8601 time>

	Only keep publications whose publication date is less than or equal to given time (add “T00:00:00Z” to the end to get an ISO-8601 time from a date)

	-citations-count

	<positive integer> …

	Only keep publications whose citations count is equal to one of given counts

	-not-citations-count

	<positive integer> …

	Only keep publications whose citations count is not equal to any of given counts

	-citations-count-more

	<positive integer>

	Only keep publications whose citations count is more than the given count

	-citations-count-less

	<positive integer>

	Only keep publications whose citations count is less than the given count

	-citations-timestamp-more

	<ISO-8601 time>

	Only keep publications whose citations count last update timestamp is more than or equal to the given time

	-citations-timestamp-less

	<ISO-8601 time>

	Only keep publications whose citations count last update timestamp is less than or equal to the given time

	-corresp-author-name

	<regex>

	Only keep publications with a corresponding author name having a match with the given regular expression

	-not-corresp-author-name

	<regex>

	Only keep publications with no corresponding authors names having a match with the given regular expression

	-corresp-author-name-empty

	
	Only keep publications whose corresponding authors names are empty

	-not-corresp-author-name-empty

	
	Only keep publications with a corresponding author name that is not empty

	-corresp-author-orcid

	<regex>

	Only keep publications with a corresponding author ORCID iD having a match with the given regular expression

	-not-corresp-author-orcid

	<regex>

	Only keep publications with no corresponding authors ORCID iDs having a match with the given regular expression

	-corresp-author-orcid-empty

	
	Only keep publications whose corresponding authors ORCID iDs are empty

	-not-corresp-author-orcid-empty

	
	Only keep publications with a corresponding author ORCID iD that is not empty

	-corresp-author-email

	<regex>

	Only keep publications with a corresponding author e-mail address having a match with the given regular expression

	-not-corresp-author-email

	<regex>

	Only keep publications with no corresponding authors e-mail addresses having a match with the given regular expression

	-corresp-author-email-empty

	
	Only keep publications whose corresponding authors e-mail addresses are empty

	-not-corresp-author-email-empty

	
	Only keep publications with a corresponding author e-mail address that is not empty

	-corresp-author-phone

	<regex>

	Only keep publications with a corresponding author telephone number having a match with the given regular expression

	-not-corresp-author-phone

	<regex>

	Only keep publications with no corresponding authors telephone numbers having a match with the given regular expression

	-corresp-author-phone-empty

	
	Only keep publications whose corresponding authors telephone numbers are empty

	-not-corresp-author-phone-empty

	
	Only keep publications with a corresponding author telephone number that is not empty

	-corresp-author-uri

	<regex>

	Only keep publications with a corresponding author web page address having a match with the given regular expression

	-not-corresp-author-uri

	<regex>

	Only keep publications with no corresponding authors web page addresses having a match with the given regular expression

	-corresp-author-uri-empty

	
	Only keep publications whose corresponding authors web page addresses are empty

	-not-corresp-author-uri-empty

	
	Only keep publications with a corresponding author web page address that is not empty

	-corresp-author-size

	<positive integer> …

	Only keep publications whose corresponding authors size is equal to one of given sizes

	-not-corresp-author-size

	<positive integer> …

	Only keep publications whose corresponding authors size is not equal to any of given sizes

	-corresp-author-size-more

	<positive integer>

	Only keep publications whose corresponding authors size is more than given size

	-corresp-author-size-less

	<positive integer>

	Only keep publications whose corresponding authors size is less than given size

	-visited

	<regex>

	Only keep publications with a visited site whose URL has a match with the given regular expression

	-not-visited

	<regex>

	Only keep publications with no visited sites whose URL has a match with the given regular expression

	-visited-host

	<string> <string> …

	Only keep publications with a visited site whose URL host part is present in the given list of strings (comparison is done case-insensitively and “www.” is removed)

	-not-visited-host

	<string> <string> …

	Only keep publications with no visited sites whose URL host part is present in the given list of strings (comparison is done case-insensitively and “www.” is removed)

	-visited-type

	<PublicationPartType> …

	Only keep publications with a visited site of type equal to one of given types

	-not-visited-type

	<PublicationPartType> …

	Only keep publications with no visited sites of type equal to any of given types

	-visited-type-more

	<PublicationPartType>

	Only keep publications with a visited site of better type than the given type

	-visited-type-less

	<PublicationPartType>

	Only keep publications with a visited site of lesser type than the given type

	-visited-type-final

	
	Only keep publications with a visited site of final type

	-not-visited-type-final

	
	Only keep publications with no visited sites of final type

	-visited-type-pdf

	
	Only keep publications with a visited site of PDF type

	-not-visited-type-pdf

	
	Only keep publications with no visited sites of PDF type

	-visited-from

	<regex>

	Only keep publications with a visited site whose provenance URL has a match with the given regular expression

	-not-visited-from

	<regex>

	Only keep publications with no visited sites whose provenance URL has a match with the given regular expression

	-visited-from-host

	<string> <string> …

	Only keep publications with a visited site whose provenance URL host part is present in the given list of strings (comparison is done case-insensitively and “www.” is removed)

	-not-visited-from-host

	<string> <string> …

	Only keep publications with no visited sites whose provenance URL host part is present in the given list of strings (comparison is done case-insensitively and “www.” is removed)

	-visited-time-more

	<ISO-8601 time>

	Only keep publications with a visited site whose visit time is more than or equal to the given time

	-visited-time-less

	<ISO-8601 time>

	Only keep publications with a visited site whose visit time is less than or equal to the given time

	-visited-size

	<positive integer> …

	Only keep publications whose visited sites size is equal to one of given sizes

	-not-visited-size

	<positive integer> …

	Only keep publications whose visited sites size is not equal to any of given sizes

	-visited-size-more

	<positive integer>

	Only keep publications whose visited sites size is more than the given size

	-visited-size-less

	<positive integer>

	Only keep publications whose visited sites size is less than the given size

Filter publication parts

Conditions that publication parts must meet for the publication to be retained in the pipeline.

Each parameter (except -part-empty, -not-part-empty, -part-usable, -not-part-usable, -part-final, -not-part-final) has a corresponding parameter specifying the publication parts that need to meet the condition given by the parameter. For example, -part-content gives a regular expression and -part-content-part lists all publication parts that must have a match with the given regular expression. If -part-content is specified, then -part-content-part must also be specified (and vice versa).

A publication part is any of: the pmid, the pmcid, the doi, title, keywords, MeSH, EFO, GO, theAbstract, fulltext.

	Parameter

	Parameter args

	Description

	-part-empty

	<PublicationPartName> …

	Only keep publications with specified parts being empty

	-not-part-empty

	<PublicationPartName> …

	Only keep publications with specified parts not being empty

	-part-usable

	<PublicationPartName> …

	Only keep publications with specified parts being usable

	-not-part-usable

	<PublicationPartName> …

	Only keep publications with specified parts not being usable

	-part-final

	<PublicationPartName> …

	Only keep publications with specified parts being final

	-not-part-final

	<PublicationPartName> …

	Only keep publications with specified parts not being final

	-part-content

	<regex>

	Only keep publications where the contents of all parts specified with -part-content-part have a match with the given regular expression

	-not-part-content

	<regex>

	Only keep publications where the contents of all parts specified with -not-part-content-part do not have a match with the given regular expression

	-part-size

	<positive integer> …

	Only keep publications where the sizes of all parts specified with -part-size-part are equal to any of given sizes

	-not-part-size

	<positive integer> …

	Only keep publications where the sizes of all parts specified with -not-part-size-part are not equal to any of given sizes

	-part-size-more

	<positive integer>

	Only keep publications where the sizes of all parts specified with -part-size-more-part are more than the given size

	-part-size-less

	<positive integer>

	Only keep publications where the sizes of all parts specified with -part-size-less-part are less than the given size

	-part-type

	<PublicationPartType> …

	Only keep publications where the types of all parts specified with -part-type-part are equal to any of given types

	-not-part-type

	<PublicationPartType> …

	Only keep publications where the types of all parts specified with -not-part-type-part are not equal to any of given types

	-part-type-more

	<PublicationPartType>

	Only keep publications where the types of all parts specified with -part-type-more-type are better than the given type

	-part-type-less

	<PublicationPartType>

	Only keep publications where the types of all parts specified with -part-type-less-type are lesser than the given type

	-part-type-final

	<PublicationPartType>

	Only keep publications where the types of all parts specified with -part-type-final are of final type

	-not-part-type-final

	<PublicationPartType>

	Only keep publications where the types of all parts specified with -not-part-type-final are not of final type

	-part-type-pdf

	<PublicationPartType>

	Only keep publications where the types of all parts specified with -part-type-pdf-part are of PDF type

	-not-part-type-pdf

	<PublicationPartType>

	Only keep publications where the types of all parts specified with -not-part-type-pdf-part are not of PDF type

	-part-url

	<regex>

	Only keep publications where the URLs of all parts specified with -part-url-part have a match with the given regular expression

	-not-part-url

	<regex>

	Only keep publications where the URLs of all parts specified with -not-part-url-part do not have a match with the given regular expression

	-part-url-host

	<string> <string> …

	Only keep publications where the URL host parts of all parts specified with -part-url-host-part are present in the given list of strings (comparison is done case-insensitively and “www.” is removed)

	-not-part-url-host

	<string> <string> …

	Only keep publications where the URL host parts of all parts specified with -not-part-url-host-part are not present in the given list of strings (comparison is done case-insensitively and “www.” is removed)

	-part-time-more

	<ISO-8601 time>

	Only keep publications where the timestamps of all parts specified with -part-time-more-part are more than or equal to the given time

	-part-time-less

	<ISO-8601 time>

	Only keep publications where the timestamps of all parts specified with -part-time-less-part are less than or equal to the given time

Filter webpages and docs

Conditions that webpages and docs must meet to be retained in the pipeline.

	Parameter

	Parameter args

	Description

	-broken

	
	Only keep webpages and docs that are broken

	-not-broken

	
	Only keep webpages and docs that are not broken

	-start-url

	<regex>

	Only keep webpages and docs whose start URL has a match with the given regular expression

	-not-start-url

	<regex>

	Only keep webpages and docs whose start URL does not have a match with the given regular expression

	-start-url-host

	<string> <string> …

	Only keep webpages and docs whose start URL host part is present in the given list of strings (comparison is done case-insensitively and “www.” is removed)

	-not-start-url-host

	<string> <string> …

	Only keep webpages and docs whose start URL host part is not present in the given list of strings (comparison is done case-insensitively and “www.” is removed)

	-final-url

	<regex>

	Only keep webpages and docs whose final URL has a match with the given regular expression

	-not-final-url

	<regex>

	Only keep webpages and docs whose final URL does not have a match with the given regular expression

	-final-url-host

	<string> <string> …

	Only keep webpages and docs whose final URL host part is present in the given list of strings (comparison is done case-insensitively and “www.” is removed)

	-not-final-url-host

	<string> <string> …

	Only keep webpages and docs whose final URL host part is not present in the given list of strings (comparison is done case-insensitively and “www.” is removed)

	-final-url-empty

	
	Only keep webpages and docs whose final URL is empty

	-not-final-url-empty

	
	Only keep webpages and docs whose final URL is not empty

	-content-type

	<regex>

	Only keep webpages and docs whose HTTP Content-Type has a match with the given regular expression

	-not-content-type

	<regex>

	Only keep webpages and docs whose HTTP Content-Type does not have a match with the given regular expression

	-content-type-empty

	
	Only keep webpages and docs whose HTTP Content-Type is empty

	-not-content-type-empty

	
	Only keep webpages and docs whose HTTP Content-Type is not empty

	-status-code

	<integer> <integer> …

	Only keep webpages and docs whose HTTP status code is equal to one of given codes

	-not-status-code

	<integer> <integer> …

	Only keep webpages and docs whose HTTP status code is not equal to any of given codes

	-status-code-more

	<integer>

	Only keep webpages and docs whose HTTP status code is bigger than the given code

	-status-code-less

	<integer>

	Only keep webpages and docs whose HTTP status code is smaller than the given code

	-title

	<regex>

	Only keep webpages and docs whose page title has a match with the given regular expression

	-not-title

	<regex>

	Only keep webpages and docs whose page title does not have a match with the given regular expression

	-title-size

	<positive integer> …

	Only keep webpages and docs whose title length is equal to one of given lengths

	-not-title-size

	<positive integer> …

	Only keep webpages and docs whose title length is not equal to any of given lengths

	-title-size-more

	<positive integer>

	Only keep webpages and docs whose title length is more than the given length

	-title-size-less

	<positive integer>

	Only keep webpages and docs whose title length is less than the given length

	-content

	<regex>

	Only keep webpages and docs whose content has a match with the given regular expression

	-not-content

	<regex>

	Only keep webpages and docs whose content does not have a match with the given regular expression

	-content-size

	<positive integer> …

	Only keep webpages and docs whose content length is equal to one of given lengths

	-not-content-size

	<positive integer> …

	Only keep webpages and docs whose content length is not equal to any of given lengths

	-content-size-more

	<positive integer>

	Only keep webpages and docs whose content length is more than the given length

	-content-size-less

	<positive integer>

	Only keep webpages and docs whose content length is less than the given length

	-content-time-more

	<ISO-8601 time>

	Only keep webpages and docs whose content time is more than or equal to the given time

	-content-time-less

	<ISO-8601 time>

	Only keep webpages and docs whose content time is less than or equal to the given time

	-license

	<regex>

	Only keep webpages and docs whose software license has a match with the given regular expression

	-not-license

	<regex>

	Only keep webpages and docs whose software license does not have a match with the given regular expression

	-license-empty

	
	Only keep webpages and docs whose software license is empty

	-not-license-empty

	
	Only keep webpages and docs whose software license is not empty

	-language

	<regex>

	Only keep webpages and docs whose programming language has a match with the given regular expression

	-not-language

	<regex>

	Only keep webpages and docs whose programming language does not have a match with the given regular expression

	-language-empty

	
	Only keep webpages and docs whose programming language is empty

	-not-language-empty

	
	Only keep webpages and docs whose programming language is not empty

	-has-scrape

	
	Only keep webpages and docs that have scraping rules (based on final URL)

	-not-has-scrape

	
	Only keep webpages and docs that do not have scraping rules (based on final URL)

Sort content

Sorting of fetched/loaded and filtered content. If sorted by their ID, then publications are first sorted by the PMID, then by the PMCID (if PMID is absent), then by the DOI (if PMID and PMCID are absent). Internally, the PMID, the PMCID and the DOI registrant are sorted numerically, DOIs within the same registrant alphabetically. If sorted by their URL, then webpages and docs are sorted alphabetically according to their startUrl.

	Parameter

	Parameter args

	Description

	-asc

	
	Sort publications, webpages and docs by their ID/URL in ascending order

	-desc

	
	Sort publications, webpages and docs by their ID/URL in descending order

	-asc-time

	
	Sort publications, webpages and docs by their fetchTime in ascending order

	-desc-time

	
	Sort publications, webpages and docs by their fetchTime in descending order

Limit content

Fetched/loaded, filtered and sorted content can be limited to a given number of entries either in the front or back. The list of top hosts will also be limited.

	Parameter

	Parameter args

	Description

	-head

	<positive integer>

	Only keep the first given number of publications, webpages and docs (same for top hosts from publications, webpages and docs)

	-tail

	<positive integer>

	Only keep the last given number of publications, webpages and docs (same for top hosts from publications, webpages and docs)

Update citations count

	Parameter

	Parameter args

	Description

	-update-citations-count

	<database file>

	Fetch and update the citations count and citations count last update timestamp of all publications resulting from the pipeline and put successfully updated publications to the given database

Put to database

	Parameter

	Parameter args

	Description

	-put

	<database file>

	Put all publications, webpages and docs resulting from the pipeline to the given database, overwriting any existing entries that have equal IDs/URLs

Remove from database

	Parameter

	Parameter args

	Description

	-remove

	<database file>

	From the given database, remove all publications, webpages and docs with IDs corresponding to IDs of publications, webpages and docs resulting from the pipeline

Output

Output final list of publications (or publication parts specified by --out-part), webpages and docs resulting from the pipeline to stdout or the specified text files in the format specified by the Output modifiers --plain and --format.

If --format text (the default) and --plain are specified and --out-part specifies only publication IDs, then publications will be output in the form <pmid>\t<pmcid>\t<doi>, one per line. Also in case of --format text --plain, if --out-part specifies only one publication part (that is not theAbstract or fulltext), then for each publication there will be only one line in the output, containing the plain text output of that publication part. Otherwise, there will be separator lines separating different publications in the output.

If --format html and --plain are specified and --out-part specifies only publication IDs, then the output will be a HTML table of publication IDs, with one row corresponding to one publication.

The full output format of --format json is specified later in JSON format. There is also a short description about the HTML and plain text outputs.

Additionally, there are operations to get the so-called top hosts: all host parts of URLs of visited sites of publications, of URLs of webpages and of URLs of docs, starting from the most common and including count numbers. This can be useful for example for finding hosts to write scraping rules for. When counting different hosts, comparison of hosts is done case-insensitively and “www.” is removed. Parameter -has-scrape can be added to only output hosts for which scraping rules could be found and parameter -not-has-scrape added to only output hosts for which no scraping rules could be found. Parameters -head and -tail can be used to limit the size of top hosts output.

For analysing the different sources of publication part content, there is an option to print a PublicationPartType vs PublicationPartName table in CSV format.

	Parameter

	Parameter args

	Description

	-out

	
	Output publications (or publication parts specified by --out-part), webpages and docs to stdout in the format specified by the Output modifiers --plain and --format

	-txt-pub

	<file>

	Output publications (or publication parts specified by --out-part) to the given file in the format specified by the Output modifiers --plain and --format

	-txt-web

	<file>

	Output webpages to the given file in the format specified by the Output modifiers --plain and --format

	-txt-doc

	<file>

	Output docs to the given file in the format specified by the Output modifiers --plain and --format

	-count

	
	Output count numbers for publications, webpages and docs to stdout

	-out-top-hosts

	
	Output all host parts of URLs of visited sites of publications, of URLs of webpages and of URLs of docs to stdout, starting from most common and including count number

	-txt-top-hosts-pub

	<file>

	Output all host parts of URLs of visited sites of publications to the given file, starting from the most common and including count numbers

	-txt-top-hosts-web

	<file>

	Output all host parts of URLs of webpages to the given file, starting from the most common and including count numbers

	-txt-top-hosts-doc

	<file>

	Output all host parts of URLs of docs to the given file, starting from the most common and including count numbers

	-count-top-hosts

	
	Output number of different host parts of URLs of visited sites of publications, of URLs of webpages and of URLs of docs to stdout

	-part-table

	
	Output a PublicationPartType vs PublicationPartName table in CSV format to stdout, i.e. how many publications have content for the given publication part fetched from the given resource type

Output modifiers

Some parameters to influence the behaviour of outputting operations.

	Parameter

	Parameter args

	Default

	Description

	--plain

	
	
	If specified, then any potential metadata will be omitted from the output

	--format

	<Format>

	text

	Can choose between plain text output format (text), HTML format (html) and JSON format (json)

	--out-part

	<PublicationPartName> …

	
	If specified, then only the specified publication parts will be output (webpages and docs are not affected). Independent from the --fetch-part parameter.

Test

Operations for testing built-in and configurable scraping rules (e.g., -print-europepmc-xml and -test-europepmc-xml; -print-site and -test-site) are described in the scraping rules section.

Examples

Operations with IDs

As a first step in the pipeline of operations, some publication IDs, webpage URLs or doc URLs must be loaded (and possibly filtered). How to create and populate the database files used in this section is explained in the next section.

$ java -jar pubfetcher-cli-<version>.jar \
-pub 12345678 10.1093/nar/gkw199 -pub-file pub1.txt pub2.txt \
-pub-db database.db new.db \
-has-pmcid -doi '(?i)nmeth' \
-doi-url '^https://www.ebi.ac.uk/europepmc/' -doi-registrant 1038 \
-out-ids --plain

First, add two publication IDs from the command-line: a publication ID where the PMID is 12345678 and a publication ID where the DOI is 10.1093/nar/gkw199. Then add publication IDs from the text files pub1.txt and pub2.txt, where each line must be in the form <pmid>\t<pmcid>\t<doi> (except empty lines and lines beginning with # which are ignored). As last, add all publication IDs found in the database files database.db and new.db. The resulting list of publication IDs is actually a set, meaning duplicate IDs will be merged.

Then, the publication IDs will be filtered. Parameter -has-pmcid means that only publication IDs that have a non-empty PMCID (probably meaning that the fulltext is available in PubMed Central) will be kept. Specifying -doi '(?i)nmeth' means that, in addition, the DOI part of the ID must have a match with “nmeth” (Nature Methods) case-insensitively (we specify case-insensitivity with “(?i)” because we are converting the DOIs to upper-case). With -doi-url we specify that the DOI was found first from the Europe PMC API and with -doi-registrant we specify that the DOI registrant code must be 1038 (Nature).

The resultant list of filtered publication IDs will be output to standard output as plain text with the parameter -out-ids. Specifying the modifier --plain means that the ID provenance URLs will not be output and the output of IDs will be in the form <pmid>\t<pmcid>\t<doi>.

$ java -jar pubfetcher-cli-<version>.jar \
-pub-db new.db -web-db new.db -not-in-db database.db \
-url '^https' -not-url-host bioconductor.org github.com \
-txt-ids-pub pub.json -txt-ids-web web.json --format json

First, add all publication IDs and all webpage URLs from the database file new.db. With -not-in-db we remove all publication IDs and webpage URLs that are already present in the database file database.db. With the regex ^https specified using the -url parameter only webpage URLs whose schema is HTTPS are kept. And with -not-url-host we remove all webpage URLs whose host part is bioconductor.org or github.com (or “www.bioconductor.org” or “www.github.com”) case-insensitively. The resultant list of publication IDs will be output to the file pub.json and the resultant list of webpage URLs will be output to the file web.json. The output will be in JSON format because it was specified using the --format modifier. By using --format html or --format html --plain we would get a HTML file instead, which when opened in a web browser would list the IDs and URLs as clickable links.

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-has-pmid -asc-ids -head-ids 10 -txt-ids-pub oldpmid.txt --plain

Add all publication IDs from the database file database.db, only keep publication IDs that have a non-empty PMID part, order the publication IDs (smallest PMID first) and only keep the 10 first IDs. The resultant 10 publication IDs will be output to the file oldpmid.txt, where each line is in the form <pmid>\t<pmcid>\t<doi>.

$ java -jar pubfetcher-cli-<version>.jar \
-pub-file oldpmid.txt -pub 12345678 -remove-ids database.db

publications that have a small PMID are in the database possibly by mistake. So we can review the file oldpmid.txt generated in the previous step and keep entries we want to remove from the database listed in that file. Then, with the last command, we add publication IDs from the file oldpmid.txt, manually add an extra publication ID with PMID 12345678 from the command-line and with -remove-ids remove all publications corresponding to the resultant list of publication IDs from the database file database.db.

Get content

Next, we’ll see how content can be fetched/loaded and how database files (such as those used in the previous section) can be populated with content.

$ java -jar pubfetcher-cli-<version>.jar -db-init database.db

This creates a new empty database file called database.db.

$ java -jar pubfetcher-cli-<version>.jar -pub-file pub.txt \
-fetch --timeout 30000 -usable -put database.db

Add all publication IDs from the file pub.txt (where each line is in the form <pmid>\t<pmcid>\t<doi>) and for each ID put together a publication with content fetched from different resources, thus getting a list of publications. The connect and read timeout is changed from the default value of 15 seconds to 30 seconds with the general Fetching parameter timeout. Filter out non-usable publications from the list with parameter -usable and put all publications from the resultant list to the database file database.db. Any existing publication with an ID equal to an ID of a new publication will be overwritten.

$ java -jar pubfetcher-cli-<version>.jar -pub-file pub.txt \
-fetch-put database.db --timeout 30000

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-db database.db -not-usable -remove database.db

If parameters -fetch and -put are used, then first all publications are fetched and loaded into memory, and only then all publications are saved to the database file at once. This is not optimal if there are a lot of publications to fetch, as if some severe error occurs, all content will be lost. Using the parameter -fetch-put, each publication will be put to the database right after it has been fetched. This has the downside of not being able to filter publications before they are put to the database. One way around this is to put all content to the database while fetching and then remove some of the entries from the database based on required filters, as illustrated by the second command.

$ java -jar pubfetcher-cli-<version>.jar -pub-file pub.txt \
-db-fetch database.db --threads 16 -usable -count

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-db database.db -count

With parameter -db-fetch the following happens for each publication: first the publication is looked for in the database; if found, it will be updated with fetched content, if possible and required, and saved back to the database file; if not found, a new publication will be put together with fetched content and put to the database file. This potentially enables less fetching in the future and enables progressive betterment of some publications over time. Additionally, in contrast to -fetch and -fetch-put, operation -db-fetch is multithreaded (with the number of threads specified using --threads), thus much quicker.

Like with -fetch-put, publications can’t be filtered before they are put to the database. Any specified filter parameters will only have an effect on which content is retained in memory for further processing (like outputting) down the pipeline. For example, with -usable -count, the number of usable publications is output to stdout after fetching is done, but both usable and non-usable publications were saved to the database file, as can be seen with the -count of the seconds command.

$ java -jar pubfetcher-cli-<version>.jar -db-init new.db

$ java -jar pubfetcher-cli-<version>.jar -pub-file pub.txt \
-db-fetch new.db --threads 16 -usable -count

$ java -jar pubfetcher-cli-<version>.jar -pub-db new.db \
-db new.db -not-usable -remove new.db

$ java -jar pubfetcher-cli-<version>.jar -pub-db new.db \
-db new.db -put database.db

Sometimes, we may want only “fresh” entries (fetched only once and not updated), like -fetch and -fetch-put provide, but with multithreading support, like -db-fetch provides, and with filtering support, like -fetch provides. Then, the above sequence of commands can be used: make a new database file called new.db; fetch entries to new.db using 16 threads; filter out non-usable entries from new.db; and put content from new.db to our main database file, overwriting any existing entries there.

Another similar option would be to disable updating of entries by setting the retryLimit to 0 and emptyCooldown, nonFinalCooldown, fetchExceptionCooldown to a negative number.

$ java -jar pubfetcher-cli-<version>.jar -pub-file pub.txt \
-db-fetch-end database.db --threads 16

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-db database.db -usable -count

Parameter -db-fetch will, in addition to saving entries to the database file, load all entries into memory while fetching for further processing (like outputting) down the pipeline. This might cause excessive memory usage if a lot of entries are fetched. Thus, parameter -db-fetch-end is provided, which is like -db-fetch except it does not retain any of the entries in memory. Any further filtering, outputting, etc can be done on the database file after fetching with -db-fetch-end is done, as shown with the provided second command.

$ java -jar pubfetcher-cli-<version>.jar \
-pub-file pub.txt -web-file web.txt -doc-file doc.txt \
-db-fetch-end database.db --threads 16 --log database.log

An example of a comprehensive and quick fetching command: add all provided publication IDs, webpage URLs and doc URLs, fetch all corresponding publications, webpages and docs, using 16 threads for this process and saving the content to the database file database.db, and append all log messages to the file database.log for possible future reference and analysis.

Loading content

After content has been fetched, e.g. using one of commands in the previous section, it can be loaded and explored.

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-db database.db --pre-filter -oa -journal-title 'Nature' \
-not-part-empty fulltext -out | less

From the database file database.db, load all publications that are Open Access, that are from a journal whose title has a match with the regular expression Nature and whose fulltext part is not empty, and output these publications with metadata and in plain text to stdout, from where output is piped to the pager less. Specifying --pre-filter means that content is filtered while being loaded from the database, meaning that entries not passing the filter will not be retained in memory. If --pre-filter would not be specified, then first all entries corresponding to the added publication IDs would be loaded to memory at once and only then would the entries start to be removed with the specified filters. This has the advantage of being able to see in log messages how many entries pass each filter, however, if the number of added and filtered publication IDs is very big, it could be better to use --pre-filter to not cause excessive memory usage.

Limit fetching/loading

For testing or memory reduction purposes the number of fetched/loaded entries can be limited with --limit.

$ java -jar pubfetcher-cli-<version>.jar -pub-file pub.txt \
-fetch --limit 3 -out | less

Only fetch and output the first 3 publications listed in pub.txt.

$ java -jar pubfetcher-cli-<version>.jar -pub-file pub.txt \
-fetch --limit 3 --pre-filter -oa -out | less

Only fetch and output the first 3 Open Access publications listed in pub.txt. Using --pre-filter means that filtering is done before limiting the entries, meaning that more than 3 entries might be fetched, because fetching happens until a third Open Access publication is encountered, but exactly 3 entries are output (if there are enough publications listed in pub.txt). If --pre-filter was not used, then exactly 3 entries would be fetched (if there are enough publications listed in pub.txt), meaning that less than 3 entries might be output, because not all of the publications might be Open Access.

Fetch only some publication parts

If we are only interested in some publication parts, it might be advantageous to list them explicitly. This might make fetching faster, because we can skip Internet resources that can’t provide us with any missing parts we are interested in or we can stop fetching of new resources altogether if all parts we are interested in are final.

$ java -jar pubfetcher-cli-<version>.jar -pub-file pub.txt \
-fetch --fetch-part title theAbstract -out | less

Only fetch the title and theAbstract for the added publication IDs, all other publication parts (except IDs) will be empty in the output.

$ java -jar pubfetcher-cli-<version>.jar -pub-file pub.txt \
-fetch --fetch-part title theAbstract \
-out --out-part title theAbstract --plain | less

If only title and theAbstract are fetched, then all other publication parts (except IDs) will be empty, thus we might not want to output these empty parts. This can be done be specifying the title and theAbstract parts with --out-part. Additionally specifying --plain means no metadata is output either, thus the output will consist of only plain text publication titles and abstracts with separating characters between different publications.

Converting IDs

As a special case of the ability to only fetch some publication parts, PubFetcher can be used as an ID converter between PMID/PMCID/DOI.

$ java -jar pubfetcher-cli-<version>.jar -pub-file pub.txt \
-fetch --fetch-part pmid pmcid doi --out-part pmid pmcid doi \
-txt-pub newpub.txt --plain

Take all publication IDs from pub.txt (where each line is in the form <pmid>\t<pmcid>\t<doi>) and for each ID fetch only publication parts the PMID, the PMCID and the DOI and output only these parts to the file newpub.txt. In the output file each line will be in the form <pmid>\t<pmcid>\t<doi>, because ID provenance URLs are excluded with --plain and no other publication parts are output. If the goal is to convert only DOI to PMID and PMCID, for example, then each line in pub.txt could be in the form \t\t<doi> and parameters specified as --fetch-part pmid pmcid --out-part pmid pmcid.

$ java -jar pubfetcher-cli-<version>.jar -db-init newpub.db

$ java -jar pubfetcher-cli-<version>.jar -pub-file pub.txt \
-db-fetch-end newpub.db --threads 16 --fetch-part pmid pmcid doi

$ java -jar pubfetcher-cli-<version>.jar -pub-file pub.txt \
-db newpub.db --out-part pmid pmcid doi -txt-pub newpub.txt --plain

If a lot of publication IDs are to be converted, it would be better to first fetch all publications to a resumable temporary database file, using the multithreaded -db-fetch-end, and only then output the parts the PMID, the PMCID and the DOI to the file newpub.txt.

$ java -jar pubfetcher-cli-<version>.jar -pub-db newpub.db \
-db newpub.db -part-table

We can output a PublicationPartType vs PublicationPartName table in CSV format to see from which resources the converted IDs were got from. Most likely the large majority will be from Europe PMC (e.g., https://www.ebi.ac.uk/europepmc/webservices/rest/search?resulttype=core&format=xml&query=ext_id:17478515%20src:med). DOIs with types other than the “europepmc”, “pubmed” or “pmc” types were not converted to DOI by the corresponding resource but just confirmed by it (as fetching that resource required the knowledge of a DOI in the first place). Type “external” means that the supplied ID was not found and confirmed in any resource.

In one instance of around 10000 publications, the usefulness of PubFetcher for only ID conversion manifested itself mostly in the case of finding PMCIDs. But even then, around 97% of PMCIDs were present in Europe PMC. As to the rest, around 2% were of type “link_oadoi” (i.e., found using Unpaywall) and around 1% were of type “pubmed_xml” (i.e., present in PubMed, but not Europe PMC, although it was mostly articles which had been assigned a PMCID but were actually not yet available due to delayed release (embargo)). In the case of PMIDs the usefulness is even less and mostly in finding a corresponding PMID (if missing) to the PMCID found using a source other than Europe PMC. And in the case of DOIs, only a couple (out of 10000) were found from resources other than Europe PMC (mostly because initially only a PMCID was supplied and that PMCID was not present in Europe PMC).

So in conclusion, PubFetcher gives an advantage of a few percent over simply using an XML returned by the Europe PMC API when finding PMCIDs for articles (but also when converting from DOI to PMID), but gives almost no advantage when converting from PMID to DOI.

Filtering content

The are many possible filters, all of which are defined above in the section Filter content.

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db -web-db \
database.db -doc-db database.db -db database.db -usable -grep 'DNA' \
-oa -pub-date-more 2018-08-15T00:00:00Z -citations-count-more 9 \
-corresp-author-size 1 2 -part-size-more 2 -part-size-more-part \
keywords mesh -part-type europepmc_xml pmc_xml doi -part-type-part \
fulltext -part-time-more 2018-08-15T12:00:00Z -part-time-more-part \
fulltext -title '(?i)software|database' -status-code-more 199 \
-status-code-less 300 -not-license-empty -has-scrape -asc -out | less

This example will load all content (publications, webpages and docs) from the database file database.db and apply the following filters (ANDed together) to remove content before it is sorted in ascending order and output:

	Parameter

	Description

	-usable

	Only usable publications, usable webpages and usable docs will be kept

	-grep 'DNA'

	Only publications, webpages and docs whose whole content (excluding metadata) has a match with the regular expression “DNA” (i.e., contains the string “DNA”)

	-oa

	Only keep publications that are Open Access

	-pub-date-more 2018-08-15T00:00:00Z

	Only keep publications whose publication date is 2018-08-15 or later

	-citations-count-more 9

	Only keep publications that are cited more than 9 times

	-corresp-author-size 1 2

	Only keep publications for whose 1 or 2 corresponding authors were found (i.e., publications with no found corresponding authors or more that 2 corresponding authors are discarded)

	-part-size-more 2 -part-size-more-part keywords mesh

	Only keep publications that have more than 2 keywords and more than 2 MeSH terms

	-part-type europepmc_xml pmc_xml doi -part-type-part fulltext

	Only keep publications whose fulltext part is of type “europepmc_xml”, “pmc_xml” or “doi”

	-part-time-more 2018-08-15T12:00:00Z -part-time-more-part fulltext

	Only keep publications whose fulltext part has been obtained at 2018-08-15 noon (UTC) or later

	-title '(?i)software|database'

	Only keep webpages and docs whose page title has a match with the regular expression (?i)software|database (i.e., contains case-insensitively “software” or “database”)

	-status-code-more 199 -status-code-less 300

	Only keep webpages and docs whose status code is 2xx

	-not-license-empty

	Only keep webpages and docs that have a non-empty software license name present

	-has-scrape

	Only keep webpages and docs for which scraping rules are present

Terminal operations

Operations that are done on the final list of entries. If multiple such operations are specified in one command, then they will be performed in the order they are defined in this reference.

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-db database.db -oa -update-citations-count database.db

Load all publications from the database file database.db, update the citations count of all Open Access publications and save successfully updated publications back to the database file database.db.

$ java -jar pubfetcher-cli-<version>.jar -db-init oapub.db

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-db database.db -oa -put oapub.db

Copy all Open Access publications from the database file database.db to the new database file oapub.db.

$ java -jar pubfetcher-cli-<version>.jar -pub-db new.db -db new.db \
-put database.db

Copy all publications from the database file new.db to the database file database.db, overwriting any existing entries in database.db.

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-db database.db -not-oa -remove database.db

Remove all not Open Access publications from the database file database.db.

$ java -jar pubfetcher-cli-<version>.jar -pub-db other.db \
-remove-ids database.db

Remove all publications that are also present in the database file other.db from the database file database.db. As removal is done based on all IDs found in other.db and no filtering based on the content of entries needs to be done, then loading of content from the database file other.db is not done and -remove-ids must be used instead of -remove for removal from the database file database.db.

Output

Output can happen to stdout or text files in plain text, HTML or JSON, with or without metadata.

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-db database.db -out | less

Output all publications from the database file database.db to stdout in plain text and with metadata and pipe stdout to the pager less.

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-web-db database.db -db database.db \
-txt-pub pub.html -txt-web web.html --format html

Output all publications and webpages from the database file database.db in HTML format and with metadata to the files pub.html and web.html respectively.

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-db database.db \
-txt-pub pubids.html --out-part pmid pmcid doi --format html --plain

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-txt-ids-pub pubids.html --format html --plain

Both commands will output all publication IDs from the database file database.db as an HTML table to the file pubids.html.

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-db database.db -out --out-part mesh --format text --plain

Output the MeSH terms of all publications from the database file database.db to stdout in plain text and without metadata. As only one publication part (that is not theAbstract or fulltext) is output without metadata, then there will be one line of output (a list of MeSH terms) for each publication.

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-web-db database.db -db database.db \
-out-top-hosts -head 10 -not-has-scrape

From the database file database.db, output host parts of URLs of visited sites of publications and of URLs of webpages for which no scraping rules could be found, starting from the most common and including count numbers and limiting output to the 10 first hosts for both cases. This could be useful for finding hosts to add scraping rules for.

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-db database.db -part-table > part-table.csv

From all publications in the database file database.db, generate a PublicationPartType vs PublicationPartName table in CSV format and output it to the file part-table.csv.

Export to JSON

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-web-db database.db -doc-db database.db -db database.db \
-txt-pub pub.json -txt-web web.json -txt-doc doc.json --format json

Output all publications, webpages and docs from the database file database.db in JSON format and with metadata to the files pub.json, web.json and doc.json respectively. That is, export all content in JSON, so that the database file and PubFetcher itself would not be needed again for further work with the data.

Notes

The syntax of regular expressions is as defined in Java, see documentation of the Pattern class: https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html.

The ISO-8601 [https://en.wikipedia.org/wiki/ISO_8601] times must be specified like “2018-08-31T13:37:51Z” or “2018-08-31T13:37:51.123Z”.

All publication DOIs are normalised, this effect can be tested with the -normalise-doi method.

webpages and docs have the same structure, equivalent methods and common scraping rules, they just provide separate stores for saving general web pages and documentation web pages respectively.

If an entry is final (and without a fetching exception) in a database, then it can never be refetched again (only the citations count can be updated). If that entry needs to be refreshed for some reason, then -fetch or -fetch-put must be used to fetch a completely new entry and overwrite the old one in the database.

On the other hand, -db-fetch or -db-fetch-end could be used multiple times after some interval to try to complete non-final entries, e.g. web servers that were offline might be up again, some resources have been updated with extra content or we have updated some scraping rules. For example, the command java -jar pubfetcher-cli-<version>.jar -pub-file pub.txt -db-fetch-end database.db could be run a week after the same command was initially run.

Limitations

The querying capabilities of PubFetcher are rather rudimentary (unlike SQL), but hopefully enough for most use cases.

For example, different filters are ANDed together and there is no support for OR. As a workaround, different conditions can be output to temporary files of IDs/URLs that can then be put together. For example, output all publications from the database file database.db that are cited more than 9 times or that have been published on 2018-01-01 or later to stdout:

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-db database.db -citations-count-more 9 \
-txt-pub pub_citations.txt --out-part pmid pmcid doi --plain

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-db database.db -pub-date-more 2018-01-01T00:00:00Z \
-txt-pub pub_pubdate.txt --out-part pmid pmcid doi --plain

$ java -jar pubfetcher-cli-<version>.jar -pub-file pub_citations.txt \
pub_pubdate.txt -db database.db -out | less

Some advanced filtering might not be possible, because some command-line switches can’t be specified twice. For example, the filter -part-size-more 2 -part-size-more-part keywords -part-size-more 999 -part-size-more-part theAbstract will not filter out entries that have more than 2 keywords and whose theAbstract length is more than 999, but instead result in an error. As a workaround, the filter might be broken down and the result of the different conditions saved in temporary database files that can then be ANDed together:

$ java -jar pubfetcher-cli-<version>.jar -db-init pub_keywords.db

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-db database.db -part-size-more 2 -part-size-more-part keywords \
-put pub_keywords.db

$ java -jar pubfetcher-cli-<version>.jar -db-init pub_abstract.db

$ java -jar pubfetcher-cli-<version>.jar -pub-db database.db \
-db database.db -part-size-more 999 -part-size-more-part theAbstract \
-put pub_abstract.db

$ java -jar pubfetcher-cli-<version>.jar -pub-db pub_keywords.db \
-in-db pub_abstract.db -db database.db -out | less

In the pipeline the operations are done in the order they are defined in this reference and with one command the pipeline is run only once. Which means, for example, that it is not possible to filter some content and then refetch the filtered entries using only one command, because content loading/fetching happens before content filtering. In such cases, intermediate results can be saved to temporary files, which can be used by the next command to get the desired outcome. For example, get all publications from the database file database.db that have a visited site whose URL has a match with the regular expression academic\.oup\.com|[a-zA-Z0-9.-]*sciencemag\.org and refetch those publications from scratch, overwriting the corresponding old publications in database.db:

$ java -jar pubfetcher-cli-<version>.jar \
-pub-db database.db -db database.db \
-visited 'academic\.oup\.com|[a-zA-Z0-9.-]*sciencemag\.org' \
-txt-pub oup_science.txt --out-part pmid pmcid doi --plain

$ java -jar pubfetcher-cli-<version>.jar -pub-file oup_science.txt \
-fetch-put database.db

Output

Database

The database file that is used by PubFetcher to save publications, webpages and docs on disk is a simple key-value store generated by the MapDB [http://www.mapdb.org/] library.

In case of the webpages and docs stores, a key is simply the string representing the startUrl, i.e. the URL given to PubFetcher for fetching content for. The resolved finalUrl might be different than the startUrl (for example a redirection from HTTP to HTTPS might happen), meaning there might be webpages and docs with equal final URLs (that had different start URLs) stored in the database. Also to note, that webpages and docs have the same structure, they just provide two entirely separate stores for saving general web pages and documentation web pages respectively.

Publications can be identified by 3 separate IDs: a PMID, a PMCID or a DOI. Therefore, the following is done. A key – which can be called the primary ID of the publication – in the publications store is either a PMID, a PMCID or a DOI, depending on which of them was non-empty when the publication was first saved to the database. If more than one of them was available, then the PMID is preferred over the PMCID and the PMCID is preferred over the DOI. Then, there is an extra store called “publicationsMap”, where a key is an ID (PMID/PMCID/DOI) of a publication and the corresponding value is the primary ID (PMID/PMCID/DOI) of that publication. So, for example, if a publication is to be loaded from the database, first publicationsMap is consulted to find the primary ID and then the found primary ID used to find the publication from the publications store. All the mappings in publicationsMap can be dumped to stdout with -db-publications-map. There is also a store called “publicationsMapReverse”, which has mappings that are the reverse of the publicationsMap mappings, that is, from primary ID to the triplet PMID, PMCID, DOI. In addition, publicationsMapReverse stores the URLs where these PMID, PMCID and DOI were found. This reverse mapping can be useful, for example, for quickly listing all publication IDs (as the triplet PMID, PMCID, DOI) found in a database file. All the mappings in publicationsMapReverse can be dumped to stdout with -db-publications-map-reverse. The stores publicationsMapReverse and publicationsMap and the publications store are all kept coherent and in sync with each other. Also to note, that all stored DOIs are normalised, i.e. any valid prefix is removed (e.g. “https://doi.org/”, “doi:”) and letters from the 7-bit ASCII set are converted to uppercase.

The structure of the values in the publications, webpages and docs stores, i.e. the actual contents stored in the database, is best described by the next section JSON output, as the entire content of the database can be exported to an equivalently structured JSON file. To note, all the “empty”, “usable”, “final”, “totallyFinal” and “broken” fields present in the JSON output are not stored in the database, but these values are inferred from actual database values and depend on some fetching parameters. Additionally, the fields “version” and “argv” are only specific to JSON.

With a new release of PubFetcher, the structure of the database content might change (this involves code in the package org.edammap.pubfetcher.core.db [https://github.com/edamontology/pubfetcher/tree/master/core/src/main/java/org/edamontology/pubfetcher/core/db]). Currently, there is no database migration support, which means that the content of existing database files will be become unreadable in case of structure updates. If that content is still required, it would need to be refetched to a new database file (created with the new version of PubFetcher).

JSON output

The output of PubFetcher will be in JSON format if the option --format json is specified. If the option --plain is additionally specified, then fields about metadata will be omitted from the output. JSON support is implemented using libraries from the Jackson project [https://github.com/FasterXML/jackson].

Common

All JSON output will contain the fields “version” and “argv”.

	version

	Information about the application that generated this JSON file

	name

	Name of the application

	url

	Homepage of the application

	version

	Version of the application

	argv

	Array of all command-line parameters that were supplied to the application that generated this JSON file

IDs

JSON output of IDs/URLs, output using -out-ids, -txt-ids-pub, -txt-ids-web or -txt-ids-doc.

IDs of publications

Publications are identified by the triplet PMID, PMCID and DOI.

	publicationIds

	Array of publication IDs

	pmid

	The PubMed ID of the publication. Only articles available in PubMed [https://www.ncbi.nlm.nih.gov/pubmed] can have this.

	pmcid

	The PubMed Central ID of the publication. Only articles available in PMC [https://www.ncbi.nlm.nih.gov/pmc/] can have this.

	doi

	The Digital Object Identifier [https://www.doi.org/] of the publication

	pmidUrl

	Provenance URL of the PMID

	pmcidUrl

	Provenance URL of the PMCID

	doiUrl

	Provenance URL of the DOI

If --plain is specified, then the provenance URLs are not output.

URLs of webpages

Webpages are identified by a URL.

	webpageUrls

	Array of webpage URLs

URLs of docs

Docs are identified by a URL.

	docUrls

	Array of doc URLs

Contents

JSON output of the entire content of publications, webpages and docs, output using -out, -txt-pub, -txt-web and -txt-doc.

Content of publications

A publication represents one publication (most often a research paper) and contains its ID (a PMID, a PMCID and/or a DOI), content (title, abstract, full text), keywords (user-assigned, MeSH and mined EFO and GO terms) and various metadata (Open Access flag, journal title, publication date, etc).

	publications

	Array of publications

	fetchTime

	Time of initial fetch or last retryCounter reset as UNIX time [https://en.wikipedia.org/wiki/Unix_time] (in milliseconds)

	fetchTimeHuman

	Time of initial fetch or last retryCounter reset as ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601] combined date and time

	retryCounter

	A refetch can occur if the value of retryCounter is less than retryLimit; or if any of the cooldown times (in fetching parameters) of a currently true condition have passed since fetchTime, in which case retryCounter is also reset

	fetchException

	true if there was a fetching exception during the last fetch; false otherwise

	oa

	true if the article is Open Access; false otherwise

	journalTitle

	Title of the journal the article was published in

	pubDate

	Publication date of the article as UNIX time [https://en.wikipedia.org/wiki/Unix_time] (in milliseconds); negative, if unknown

	pubDateHuman

	Publication date of the article as ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601] date; before 1970-01-01, if unknown

	citationsCount

	Number of times the article has been cited (according to Europe PMC); negative, if unknown

	citationsTimestamp

	Time when citationsCount was last updated as UNIX time [https://en.wikipedia.org/wiki/Unix_time] (in milliseconds); negative, if citationsCount has not yet been updated

	citationsTimestampHuman

	Time when citationsCount was last updated as ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601] combined date and time; before 1970-01-01T00:00:00.000Z, if citationsCount has not yet been updated

	correspAuthor

	Array of objects representing corresponding authors of the article

	name

	Name of the corresponding author

	orcid

	ORCID iD [https://en.wikipedia.org/wiki/ORCID] of the corresponding author

	email

	E-mail of the corresponding author

	phone

	Telephone number of the corresponding author

	uri

	Web page of the corresponding author

	visitedSites

	Array of objects representing sites visited for getting content (outside of standard Europe PMC, PubMed and oaDOI resources and also excluding PDFs)

	url

	URL of the visited site

	type

	The type of the site (as resource)

	from

	URL where the link of the site was picked up

	timestamp

	Time when the link of the site was picked up as UNIX time [https://en.wikipedia.org/wiki/Unix_time] (in milliseconds)

	timestampHuman

	Time when the link of the site was picked up as ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601] combined date and time

	empty

	true, if all publication parts (except IDs) are empty; false otherwise

	usable

	true, if at least one publication part (apart from IDs) is usable; false otherwise

	final

	true, if title, abstract and fulltext are final; false otherwise

	totallyFinal

	true, if all publication parts are final; false otherwise

	pmid

	A publication part (like the following pmcid, doi, title, etc), in this case representing the publication PMID

	content

	Content of the publication part (in this case, the publication PMID as a string)

	type

	The type of the publication part content source

	url

	URL of the publication part content source

	timestamp

	Time when the publication part content was set as UNIX time [https://en.wikipedia.org/wiki/Unix_time] (in milliseconds)

	timestampHuman

	Time when the publication part content was set as ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601] combined date and time

	size

	Number of characters in the content

	empty

	true, if the content is empty (size is 0); false otherwise

	usable

	true, if the content is long enough (the threshold can be influenced by fetching parameters), in other words, if the publication part content can be used as input for other applications; false otherwise

	final

	true, if the content is from a reliable source and is long enough, in other words, if there is no need to try fetching the publication part content from another source; false otherwise

	pmcid

	Publication part representing the publication PMCID. Structure same as in pmid.

	doi

	Publication part representing the publication DOI. Structure same as in pmid.

	title

	Publication part representing the publication title. Structure same as in pmid.

	keywords

	Publication part representing publication keywords. Structure same as in pmid, except content is replaced with “list” and size is number of elements in “list”.

	list

	Array of string representing publication keywords

	mesh

	Publication part representing publication MeSH terms. Structure same as in pmid, except content is replaced with “list” and size is number of elements in “list”.

	list

	Array of objects representing publication MeSH terms

	term

	Term name

	majorTopic

	true, if the term is a major topic of the article

	uniqueId

	MeSH Unique Identifier

	efo

	Publication part representing publication EFO and other experimental methods terms. Structure same as in pmid, except content is replaced with “list” and size is number of elements in “list”.

	list

	Array of objects representing publication EFO terms

	term

	Term name

	count

	Number of times the term was mined from full text by Europe PMC

	uri

	Unique URI to the ontology term

	go

	Publication part representing publication GO terms. Structure same as in efo.

	abstract

	Publication part representing the publication abstract. Structure same as in pmid.

	fulltext

	Publication part representing the publication fulltext. Structure same as in pmid.

If --plain is specified, then metadata is omitted from the output (everything from fetchTime to totallyFinal) and the value corresponding to publication part keys (pmid to fulltext) will be the value of content (for pmid, pmcid, doi, title, abstract, fulltext) or the value of “list” (for keywords, mesh, efo, go) as specified above for each corresponding part.

If --out-part is specified, then everything from fetchTime to totallyFinal will be omitted from the output and only publication parts specified by --out-part will be output (with structure as specified above). If --plain is specified along with --out-part, then output parts will only have as value the value of content (for pmid, pmcid, doi, title, abstract, fulltext) or the value of “list” (for keywords, mesh, efo, go).

Content of webpages

A webpage represents a general web page from where relevant content has been extracted, along with some metadata. If the web page is about a software tool, then the software license and programming language can be stored separately, if found (this feature has been added to support EDAMmap [https://github.com/edamontology/edammap]).

	webpages

	Array of webpages

	fetchTime

	Same as fetchTime of publications

	fetchTimeHuman

	Same as fetchTimeHuman of publications

	retryCounter

	Same as retryCounter of publications

	fetchException

	Same as fetchException of publications

	startUrl

	URL given as webpage identifier, same as listed by webpageUrls

	finalUrl

	Final URL after potential redirections

	contentType

	HTTP Content-Type [https://en.wikipedia.org/wiki/Media_type] header

	statusCode

	HTTP status code [https://en.wikipedia.org/wiki/List_of_HTTP_status_codes]

	contentTime

	Time when current webpage content was last set as UNIX time [https://en.wikipedia.org/wiki/Unix_time] (in milliseconds)

	contentTimeHuman

	Time when current webpage content was last set as ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601] combined date and time

	license

	Software license of the tool the webpage is about (empty if not found or missing corresponding scraping rule)

	language

	Programming language of the tool the webpage is about (empty if not found or missing corresponding scraping rule)

	titleLength

	Number of characters in the webpage title

	contentLength

	Number of characters in the webpage content

	title

	The webpage title (as extracted by the corresponding scraping rule; or text from the HTML <title> element if scraping rules were not found)

	empty

	true, if webpage title and webpage content are empty; false otherwise

	usable

	true, if the length of webpage title plus the length of webpage content is large enough (at least webpageMinLength characters), that is, the webpage can be used as input for other applications; false otherwise

	final

	true, if the webpage is not broken and the webpage is usable and the length on the webpage content is larger than 0; false otherwise

	broken

	true, if the webpage with the given URL could not be fetched (based on the values of statusCode and finalUrl); false otherwise

	content

	The webpage content (as extracted by the corresponding scraping rule; or the automatically cleaned content from the entire HTML of the page if scraping rules were not found)

If --plain is specified, then only startUrl, webpage title and webpage content will be present.

Content of docs

Like Content of webpages, except it allows for a separate store for documentation web pages.

	docs

	Array of docs

Structure is same as in webpages

HTML and plain text output

Output will be in HTML format, if --format html is specified, and in plain text, if --format text is specified or --format is omitted (as text is the default).

The HTML output is meant to be formatted and viewed in a web browser. Links to external resources (such as the different URL fields) are clickable in the browser.

The plain text output is formatted for viewing in the console or in a text editor.

Both the HTML output and the plain text output will contain the same information as the JSON output specified above and will behave analogously in respect to the --plain and --out-part parameters. There are however a few fields that are missing in HTML and plain text compared to JSON: “empty”, “usable”, “final”, “totallyFinal”, “broken” (these values are inferred from the values of some other fields and depend on some fetching parameters) and the JSON specific “version” and “argv”.

Log file

PubFetcher-CLI will log to stderr using the Apache Log4j 2 [https://logging.apache.org/log4j/2.x/] library. With the --log parameter (described in Logging), a text file where the same log will be output to can be specified.

Each log line will consist of the following: the data and time, log level, log message, the name of the logger that published the logging event and the name of the thread that generated the logging event. The date and time will be the local time in the format “2018-08-24 11:37:20,187”. Log level can be DEBUG, INFO, WARN and ERROR. DEBUG level messages are only output to the log file (and not to the console). Currently, there are only few DEBUG messages, including the very first message listing all parameters the program was run with. Any line breaks in the log message will be escaped, so that each log message can fit on exactly one line. The name of the logger is just the fully qualified Java class (with the prefix “org.edamontology” removed) the logging event is called from (prepended with “@” in the log file), e.g. “@pubfetcher.cli.Cli”. The name of the thread will be “main” if the logging event was generated by the main thread, any subsequent thread will be named “Thread-2”, “Thread-3”, etc. In the log file the thread name will be in square brackets, e.g. “[Thread-2]”. Some Java exceptions can also be logged, these will be output with the stack trace on subsequent lines after the logged exception message.

Analysing logs

Log level ERROR is set to erroneous conditions which mostly occur on the side of the PubFetcher user (like problems in provided input), so searching for “ERROR” in log files can potentially help in finding problems that can be fixed by the user. Some problems might be caused by issues in the used resources, like Europe PMC and PubMed, and some reported problems are not problems at all, like failing to find a publication part which is actually supposed to be missing, but these messages will usually have the log level WARN. One example of WARN level messages that can indicate inconsistencies in used resource are the messages beginning with “Old ID”.

Some examples of issues found by analysing logs:

	https://github.com/bio-tools/biotoolsRegistry/issues/281

	https://github.com/bio-tools/biotoolsRegistry/issues/331

	https://github.com/bio-tools/biotoolsRegistry/issues/332

If multiple threads are writing to a log file, then the messages of different threads will be interwoven. To get the sequence of messages of only one thread, grep could be used:

$ grep Thread-2 database.log

In addition to analysing logs, the output of -part-table (described in Output) could be checked for possible problems. For example, title being “na” is a good indicator of an invalid ID. To list all such publications the filter -part-type na -part-type-part title could be used. Other things of interest might be for example parts which are from other sources than the main ones (the europepmc, pubmed, pmc types and doi) or parts missing in Europe PMC, but present in PubMed or PMC.

Fetching logic

The functionality explained in this section is mostly implemented in the source code file Fetcher.java [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/fetching/Fetcher.java].

Low-level methods

Getting a HTML document

Fetching HTML (or XML) resources for both publications and webpages/docs is done in the same method, where either the jsoup [https://jsoup.org/] or HtmlUnit [https://htmlunit.sourceforge.io/] libraries are used for getting the document. The HtmlUnit library has the advantage of supporting JavaScript, which needs to be executed to get the proper output for many sites, and it also works for some sites with problematic SSL certificates. As a disadvantage, it is a lot slower than jsoup, which is why using jsoup is the default and HtmlUnit is used only if JavaScript support is requested (or switched to automatically in case of some SSL exceptions). Also, fetching with JavaScript can get stuck for a few rare sites, in which case the misbehaving HtmlUnit code is terminated.

Supplied fetching parameters timeout and userAgent are used for setting the connect timeout and the read timeout and the User-Agent HTTP header of connections. If getting the HTML document for a publication is successful and a list of already fetched links is supplied, then the current URL will be added to that list so that it is not tried again for the current publication. The successfully fetched document is returned to the caller for further processing.

A number of exceptions can occur, in which case getting the HTML document has failed and the following is done:

	MalformedURLException

	The protocol is not HTTP or HTTPS or the URL is malformed. Getting the URL is tried again as a PDF document, as a few of these exception are caused by URLs that point to PDFs accessible through the FTP protocol.

	HttpStatusException or FailingHttpStatusCodeException

	The fetchException of the publication, webpage or doc is set to true in case the HTTP status code in the response is 503 Service Unavailable. Setting fetchException to true means the URL can be tried again in the future (depending on retryCounter or fetchExceptionCooldown) as the 503 code is usually a temporary condition. Additionally, in case of publications, fetchException is set to true for all failing HTTP status codes if the URL is not from “doi.org” and it is not a URL pointing to a PDF, PS or GZIP file.

	ConnectException or NoRouteToHostException

	An error occurred while attempting to connect a socket to a remote address and port. Set fetchException to true.

	UnsupportedMimeTypeException

	The response MIME type is not supported. If the MIME type is determined to be a PDF type, then getting the URL is tried again, but as a PDF document.

	SocketTimeoutException

	A timeout has occurred on a socket read or accept. A new attempt is made right away and if that also fails with a timeout, then fetchException is set to true.

	SSLHandshakeException or SSLProtocolException

	Problem with SSL. If fetching was attempted with jsoup, then it is attempted once more, but with HtmlUnit.

	IOException

	A connection or read error occurred, just issue a warning to the log.

	Exception

	Some other checked exception has occurred, set fetchException to true.

The HTML document fetching method can be tested with the CLI commands -fetch-document or -fetch-document-javascript (but without publications, webpages, docs and PDF support).

Getting a PDF document

Analogous to getting a HTML document. The Apache PDFBox [https://pdfbox.apache.org/] library is used for extracting content and metadata from the PDF. The method for getting a PDF document is called upon if the URL is known in advance to point to a PDF file or if this fact is found out during the fetching of the URL as a HTML document.

Nothing is returned to the caller, as the supplied publication, webpage or doc is filled directly. For webpages and docs, all the text extracted from the PDF is set as their content, and if a title is found among the PDF metadata, it is set as their title. For publications, the text extracted from the PDF is set to be the fulltext. Also, title, keywords or theAbstract are filled with content found among the PDF metadata, but as this happens very rarely, fetching of the PDF is not done at all if the fulltext is already final.

Selecting from the returned HTML document

The fetched HTML is parsed to a jsoup Document [https://jsoup.org/apidocs/org/jsoup/nodes/Document.html] and returned to the caller.

Then, parts of the document can be selected to fill the corresponding fields of publications, webpages and docs using the jsoup CSS-like element Selector [https://jsoup.org/apidocs/org/jsoup/select/Selector.html]. This is explained in more detail in the Scraping rules section.

Testing fetching of HTML (and PDF) documents and selecting from them can be done with the CLI operation -fetch-webpage-selector.

Cleaning the returned HTML document

If no selectors are specified for the given HTML document, then automatic cleaning and formatting of the document will be done instead.

The purpose of cleaning is to only extract the main content, while discarding auxiliary content, like menus and other navigational elements, footers, search and login forms, social links, contents of <noscript>, publication references, etc. We clean the document by deleting such elements and their children. The elements are found by tag names (for example <nav> or <footer>), but also their IDs, class names and ARIA [https://www.w3.org/WAI/standards-guidelines/aria/] roles are matched with combinations of keywords. Some words (like “menu” or “navbar”) are good enough to outright delete the matched element, either matching it by itself or with a specifier (like “left” or “main”) or in combination with another word (like “tab” or “links”). Other words (like the mentioned “tab” and “links”, but also “bar”, “search”, “hidden”, etc), either by themselves or combined with specifiers, are not specific enough to delete the matched element without some extra confidence. So, for these words and combinations there is the extra condition that no children or parents of the matched element can be an element that we determine to be about the main content (<main>, <article>, <h1>, “content”, “heading”, etc).

After this cleaning has been done, the remaining text will be extracted from the document and formatted. Paragraphs and other blocks of text will be separated by empty lines in the output. If any text is found in the description <meta> tag, then it will be prepended to the output.

Multithreaded fetching

Only one thread should be filling one publication or one webpage or one doc. But many threads can be filling different publications, webpages and docs in parallel. If many of these threads depend on the same resources, then what can happen is many parallel connections to the same host. To avoid such hammering, locking is implemented around each connection such that only one connection to one host is allowed at once (comparison of hosts is done case-insensitively and “www.” is removed). Other threads wanting to connect to the same host will have to wait until the resource is free again.

Fetching publications

Resources

Unfortunately, all content pertaining to a publication is not available from one sole Internet resource. Therefore, a number of resources are consulted and the final publication might contain content from different resources, for example an abstract from one place and the full text from another.

What follows is a list of these resources. They are defined in the order they are tried: if after fetching a given resource all required publication parts become final, or none of the subsequent resources can fill the missing parts, then the resources below the given resource are not fetched from.

But, if after going through all the resources below (as necessary) more IDs about the publication are known than before consulting the resources, then another run through all the resources is done, starting from the first (as knowing a new ID might enable us to query a resource that couldn’t be queried before). In doing this we are keeping track of resources that have successfully been fetched to not fetch these a second time and of course, for each resource, we are still evaluating if the resource can provide us with anything useful before fetching is attempted.

Sometimes, publication IDs can change, e.g., when we find from a resource with better type (see Publication types) that the DOI of the publication is different than what we currently have. In such cases all publication content (except IDs) is emptied and fetching restarted from scratch.

Europe PMC

Europe PubMed Central [https://europepmc.org/] is a repository containing, among other things, abstracts, full text and preprints of biomedical and life sciences articles. It is the primary resource used by PubFetcher and a majority of content can be obtained from there.

The endpoint of the API is https://www.ebi.ac.uk/europepmc/webservices/rest/search, documentation is at https://europepmc.org/RestfulWebService. The API accepts any of the publication IDs: either a PMID, a PMCID or a DOI. With parameter europepmcEmail an e-mail address can be supplied to the API.

We can possibly get all publication parts from the Europe PMC API, except for fulltext, efo and go for which we get a Y or N indicating if the corresponding part is available at the Europe PMC fulltext or Europe PMC mined resource. In addition, we can possibly get values for the publication fields oa, journalTitle, pubDate and citationsCount. Europe PMC is currently the only resource we can get the citationsCount value from.

Europe PMC itself has content from multiple sources (see https://europepmc.org/Help#contentsources) and in some cases multiple results are returned for a query (each from a different source). In that case the MED (MEDLINE) source is preferred, then PMC (PubMed Central), then PPR (preprints) and then whichever source is first in the list of results.

Europe PMC fulltext

Full text from the Europe PMC [https://europepmc.org/] API is obtained from a separate endpoint: https://www.ebi.ac.uk/europepmc/webservices/rest/{PMCID}/fullTextXML. The PMCID of the publication must be known to query the API.

The API is primarily meant for getting the fulltext, but it can also be used to get the parts pmid, pmcid, doi, title, keywords, theAbstract if these were requested and are still non-final (for some reason not obtained from the main resource of Europe PMC [https://europepmc.org/]). In addition, journalTitle and correspAuthor can be obtained.

Europe PMC mined

Europe PMC has text-mined terms from publication full texts. These can be fetched from the API endpoint https://www.ebi.ac.uk/europepmc/annotations_api/annotationsByArticleIds, documentation of the Annotations API is at https://europepmc.org/AnnotationsApi. These resources are the only way to fill the publication parts efo and go and only those publication parts can be obtained from these resources (type “Gene Ontology” is used for GO and type “Experimental Methods” for EFO). Either a PMID or a PMCID is required to query these resources.

PubMed XML

The PubMed [https://www.ncbi.nlm.nih.gov/pubmed/] resource is used to access abstracts of biomedical and life sciences literature from the MEDLINE database.

The following URL is used for retrieving data in XML format for an article: https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?retmode=xml&db=pubmed&id={PMID}. As seen, a PMID is required to query the resource. Documentation is at https://www.ncbi.nlm.nih.gov/books/NBK25500/.

In addition to theAbstract, the publication parts pmid, pmcid, doi, title and mesh can possibly be obtained from PubMed. Also, the publication part keywords can seldom be obtained, but if keywords is the only still missing publication part, then the resource is not fetched (instead, PubMed Central [https://www.ncbi.nlm.nih.gov/pmc/] is relied upon for keywords). In addition, we can possibly get values for the publication fields journalTitle and pubDate.

PubMed HTML

Information from PubMed can be ouput in different formats, including in HTML (to be viewed in the browser) from the URL: https://www.ncbi.nlm.nih.gov/pubmed/?term={PMID}. By scraping the resultant page we can get the same publication parts as from the XML obtained through PubMed E-utilities, however the HTML version of PubMed is only fetched if by that point title or theAbstract are still non-final (i.e., PubMed XML, but also Europe PMC [https://europepmc.org/], failed to fetch these for some reason). So this is more of a redundant resource, that is rarely used and even more rarely useful.

PubMed Central

PubMed Central [https://www.ncbi.nlm.nih.gov/pmc/] contains full text articles, which can be obtained in XML format from the URL: https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?retmode=xml&db=pmc&id={PMCID}, where {PMCID} is the PMCID of the publication with the “PMC” prefix removed.

It is analogous to Europe PMC fulltext and used as a backup to that resource for getting content for articles available in the PMC system.

DOI resource

Sometimes, some publication parts must be fetched directly from the publisher. A DOI (Digital Object Identifier) of a publication is a persistent identifier which, when resolved, should point to the correct URL of the journal article.

First, the DOI is resolved to the URL it redirects to and this URL is fed to the Getting a HTML document method. If the URL has a match in the JavaScript section of the Journals YAML scraping configuration, then the HTML document will be fetched using JavaScript support. The publication parts that can possibly be scraped from the article’s page are doi, title, keywords, theAbstract, fulltext and possibly (but very rarely) pmid and pmcid. These publication parts are extracted from the web page using corresponding scraping rules. If no scraping rules are found, then the content of the HTML <title> element will be set as the value of the publication part title (if title is still non-final) and the whole text of the HTML set as the value of fulltext (if fulltext is still non-final). Additionally, a link to the web page containing the full text of the article and a link pointing to the article PDF might be added to Links, if specified by the scraping rules, and in addition names and e-mails for correspAuthor can be found.

In contrast to the other resources, <meta> elements are looked for in the HTML as these might contain the publication parts pmid, pmcid, doi, title, keywords and also theAbstract, plus Links to additional web pages or PDFs containing the article and sometimes also e-mail addresses for correspAuthor. More about these meta tags is described in Meta.

Also, in contrast to other resources, the final URL resolved from the DOI is added to visitedSites.

Unpaywall

The Unpaywall service helps to find Open Access content. It us mainly useful for finding PDFs for some articles for which no full text content was found using the above resources, but it can help in filling a few other publication parts and fields also, such as oa. The service was recently called oaDOI.

The API is queried as follows: https://api.unpaywall.org/v2/{DOI}?email={oadoiEmail}, documentation is at https://unpaywall.org/products/api. As seen, the DOI of the publication must be known to query the service.

The response will be in JSON format, which is why the method of Getting a HTML document is not used (but the process of obtaining the resource is analogous). Unpaywall will be called if title, theAbstract of fulltext are non-final (or pmid, pmcid, doi are non-final, but only if these are the only publication parts requested). From the response we can possibly directly fill the publication part title and the fields oa and journalTitle. But in addition we can find Links to web pages containing the article or to PDFs of the article.

Meta

The web pages of journal articles can have metadata embedded in the HTML in <meta> elements. Sometimes this can be used to fill publication parts which have not been found elsewhere.

There are a few standard meta tag formats, those supported by PubFetcher are: HighWire, EPrints, bepress, Dublin Core, Open Graph, Twitter and generic tag (without any prefix). An example of a HighWire tag: <meta name="citation_keyword" content="foo">. An example of a Open Graph tag: <meta property="og:title" content="bar" />.

Publication parts potentially found in <meta> elements (depending on format) are: pmid, pmcid, doi, title, keywords, theAbstract. Additionally, Links to web pages containing the article or to PDFs of the article can be found in some meta tags.

In web pages of articles of some journals the standard <meta> tags are filled with content that is not entirely correct (for our purposes), so some exceptions to not use these tags for these journals have been defined.

<meta> elements are only searched for in all web pages resolved from DOI and also in all web pages added to Links.

Links

Links to web pages containing an article or to PDFs of the article can be found in the Unpaywall resource, in some Meta tags and in web pages (resolved from DOI or from Links) that have scraping rules specifying how to extract links. In addition to its URL, a publication type (see Publication types) corresponding to the resource the link was found from, the URL of the web page the link was found from and a timestamp, are saved for each link.

These links are collected in a list that will be looked through only after all other resources above have been exhausted. DOI links (with host “doi.org” or “dx.doi.org”) and links to web pages of articles in the PMC system (either Europe PMC or PubMed Central) are not added to this list. But, in case of PMC links, a missing PMCID (or PMID) of the publication can sometimes be extracted from the URL string itself. In addition, links that have already been tried or links already present in the list are not added to the list a second time.

Links are sorted according to publication types in the list they are collected to, with links of final type on top. Which means, that once fetching of resources has reached this list of links then links of higher types are visited first. If publication parts title, keywords, theAbstract and fulltext are final or with types that are better or equal to types of any of the remaining links in the list, then the remaining links are discarded.

In case of links to web pages the content is fetched and the publication is filled the same way as in the DOI resource (including the addition of the link to visitedSites), except the resolving of the DOI to URL step is not done (the supplied URL of the link is treated the same as a URL resolved from a DOI). In case of links to PDFs the content is fetched and the publication is filled as described in Getting a PDF document.

Publication types

Publication part types are the following, ordered from better to lower type:

	europepmc

	Type given to parts got from Europe PMC [https://europepmc.org/] and Europe PMC mined resources

	europepmc_xml

	From Europe PMC fulltext resource

	europepmc_html

	Currently disabled

	pubmed_xml

	From PubMed XML resource

	pubmed_html

	From PubMed HTML resource

	pmc_xml

	From PubMed Central [https://www.ncbi.nlm.nih.gov/pmc/] resource

	pmc_html

	Currently disabled

	doi

	From DOI resource (excluding PDF links)

	link

	Link to publication. Not used in PubFetcher itself. Meant as an option in applications extending or using PubFetcher.

	link_oadoi

	Given to Links found in Unpaywall resource (excluding PDF links)

	citation

	From HighWire Meta tags (excluding links)

	eprints

	From EPrints Meta tags (excluding links)

	bepress

	From bepress Meta tags (excluding PDF links)

	link_citation

	Links from Highwire Meta tags (excluding PDF links)

	link_eprints

	Links from EPrints Meta tags (excluding PDF links)

	dc

	From Dublin Core Meta tags

	og

	From Open Graph Meta tags

	twitter

	From Twitter Meta tags

	meta

	From generic Meta tags (excluding links)

	link_meta

	Links from generic Meta tags (excluding PDF links)

	external

	Type given to externally supplied pmid, pmcid or doi

	oadoi

	From Unpaywall resource (excluding links, currently only title)

	pdf_europepmc

	Currently disabled

	pdf_pmc

	Currently disabled

	pdf_doi

	Type given to PDF Links extracted from a DOI resource or if the DOI itself resolves to a PDF file (which is fetched as described in Getting a PDF document)

	pdf_link

	PDF from link to publication. Not used in PubFetcher itself. Meant as an option in applications extending or using PubFetcher.

	pdf_oadoi

	PDF Links from Unpaywall resource

	pdf_citation

	PDF Links from HighWire Meta tags

	pdf_eprints

	PDF Links from EPrints Meta tags

	pdf_bepress

	PDF Links from bepress Meta tags

	pdf_meta

	PDF Links from generic Meta tags

	webpage

	Type given to title and fulltext set from an article web page with no scraping rules

	na

	Initial type of a publication part

Types “europepmc”, “europepmc_xml”, “europepmc_html”, “pubmed_xml”, “pubmed_html”, “pmc_xml”, “pmc_html”, “doi”, “link” and “link_oadoi” are final types. Final types are the best type and they are equivalent with each other (meaning that one final type is not better than some other final type and their ordering does not matter).

The type of the publication part being final is a necessary condition for the publication part to be final. The other condition is for the publication part to be large enough (as specified by titleMinLength, keywordsMinSize, minedTermsMinSize, abstractMinLength or fulltextMinLength in fetching parameters). The fulltext part has the additional requirement of being better than “webpage” type to be considered final.

When filling a publication part then the type of the new content must be better than the type of the old content. Or, if both types are final but the publication part itself is not yet final (because the content is not large enough), then new content will override old content if new content is larger. Publication parts which are final can’t be overwritten. Also, the publication fields (these are not publication parts) journalTitle, pubDate and correspAuthor can only be set once with non-empty content, after which they can’t be overwritten anymore.

Publication parts

publication parts have content and contain the fields type, url and timestamp as described in the JSON output of the publication part pmid. The publication fields oa, journalTitle, pubDate, etc do not contain extra information besides content and are not publication parts.

The publication parts are as follows:

	pmid

	The PubMed ID of the publication. Only articles available in PubMed can have this. Only a valid PMID can be set to the part. The pmid structure.

	pmcid

	The PubMed Central ID of the publication. Only articles available in PMC can have this. Only a valid PMCID can be set to the part. The pmcid structure.

	doi

	The Digital Object Identifier of the publication. Only a valid DOI can be set to the part. The DOI will be normalised in the process, i.e. any valid prefix (e.g. “https://doi.org/”, “doi:”) is removed and letters from the 7-bit ASCII set are converted to uppercase. The doi structure.

	title

	The title of the publication. The title structure.

	keywords

	Author-assigned keywords of the publication. Often missing or not found. Empty and duplicate keywords are removed. The keywords structure.

	mesh

	Medical Subject Headings [https://www.nlm.nih.gov/mesh/] terms of the publication. Assigned to articles in PubMed (with some delay after publication). The mesh structure.

	efo

	Experimental factor ontology [https://www.ebi.ac.uk/efo/] terms of the publication (but also experimental methods terms from other ontologies like Molecular Interactions Controlled Vocabulary [https://github.com/HUPO-PSI/psi-mi-CV] and Ontology for Biomedical Investigations [http://obi-ontology.org/]). Text-mined by the Europe PMC [https://europepmc.org/] project from the full text of the article. The efo structure.

	go

	Gene ontology [http://geneontology.org/] terms of the publication. Text-mined by the Europe PMC [https://europepmc.org/] project from the full text of the article. The go structure.

	theAbstract

	The abstract of the publication. The part is called “theAbstract” instead of just “abstract”, because “abstract” is a reserved keyword in the Java programming language. The abstract structure.

	fulltext

	The full text of the publication. The part includes the title and abstract of the publication in the beginning of the content string. All the main content of the article’s full text is included, from introduction to conclusions. Captions of figures and tables and descriptions of supplementary materials are also included. From back matter, the glossary, notes and misc sections are usually included. But acknowledgements, appendices, biographies, footnotes, copyrights and, most importantly, references are excluded, whenever possible. If fulltext is obtained from a PDF, then everything is included. In the future, it could be useful to include all these parts of full text, like references, but in a structured way. The fulltext structure.

Fetching webpages and docs

A webpage or doc is also got using the method described in Getting a HTML document (or Getting a PDF document if the webpage or doc URL turns out to be a link to a PDF file). Webpage and doc fields that can be filled from the fetched content using scraping rules are the webpage title, the webpage content, license and language. Other fields are filled with metadata during the fetching process, the whole structure can be seen in webpages section of the output documentation. If no scraping rules are present for the webpage or doc then the webpage content will be the entire string parsed from the fetched HTML and the webpage title will be the content inside the <title> tag. Whether the webpage or doc is fetched with JavaScript support or not can also be influenced with scraping rules. A webpage or doc can also be fetch using rules specified on the command line with the command -fetch-webpage-selector (see Print a web page).

The same publication can be fetched multiple times, with each fetching potentially adding some missing content to the existing publication. In contrast, a webpage or doc is always fetched from scratch. If the resulting webpage or doc is final and a corresponding webpage or doc already exists, then this existing entry will be overwritten. An existing webpage or doc will also be overwritten, if the new entry is non-final (but not empty) and the old entry is non-final (and potentially empty) and if both new and old entries are empty.

Can fetch

The methods for fetching publications, webpages and docs are always given a publication, webpage or doc as parameter. If a publication, webpage or doc is fetched from scratch, then an initial empty entry is supplied. Each time, these methods have to determine if a publication, webpage or doc can be fetched or should the fetching be skipped this time. The fetching will happen if any of the following conditions is met:

	fetchTime is 0, this is only true for initial empty entries;

	the publication is empty or the webpage or doc is empty and emptyCooldown is not negative and at least emptyCooldown minutes have passed since fetchTime;

	the publication is final or the webpage or doc is final (and they are not empty) and nonFinalCooldown is not negative and at least nonFinalCooldown minutes have passed since fetchTime;

	the entry has a fetchException and fetchExceptionCooldown is not negative and at least fetchExceptionCooldown minutes have passed since fetchTime;

	the entry is empty or non-final or has a fetchException and either retryCounter is less than retryLimit or retryLimit is negative.

If it was determined that fetching happens, then fetchTime is set to the current time and retryCounter is reset to 0 if any condition except the last is met. If only the last condition (about retryCounter and retryLimit) is met, then retryCounter is incremented by 1 (and fetchTime is left as is, meaning that fetchTime does not necessarily show the time of the last fetching, but only the time of the initial fetching or the time when fetching happened because one of the cooldown timers expired).

The fetchException is set to false in the beginning of each fetching and it is set to true if some certain types of errors happen during fetching, some such error conditions are described in Getting a HTML document. fetchException can be set to true also by the method described in Getting a PDF document and the custom method getting the Unpaywall resource.

Scraping rules

Scraping

After Getting a HTML document is done, we receive a jsoup Document [https://jsoup.org/apidocs/org/jsoup/nodes/Document.html] from it. Then, the jsoup CSS-like element Selector [https://jsoup.org/apidocs/org/jsoup/select/Selector.html] can be used to select parts of the HTML or XML document for filling corresponding fields of a publication, webpage or doc. See also documentation at https://jsoup.org/cookbook/extracting-data/selector-syntax. Note that, extracting content from XMLs received from an API is not really scraping, just the same interface and jsoup methods are used for both website HTMLs and API XMLs for simplicity.

In case of publications, only publication parts specified by the CLI Get content modifiers --fetch-part, or not specified by --not-fetch-part, will be extracted (except IDs, which are always extracted). If neither --fetch-part nor --not-fetch-part is specified then all publication parts will be extracted. All other publication fields (that are not publication parts) are always extracted when present.

In case of publication IDs (pmid, pmcid, doi), only the first ID found using the selector is extracted. Any “pmid:”, “pmcid:”, “doi:” prefix, case-insensitively and ignoring whitespace, is removed from the extracted ID and the ID set to the corresponding publication part, if valid. Problems, like not finding any content for the specified selector or an ID being invalid, are logged. In case of a publication title, also only the first found content using the selector is extracted. A few rare publications have also a subtitle – this is extracted separately and appended to the title with separator ” : “. If the publication title, or any other publication part besides the IDs, is already final or the supplied selector is empty, then no extraction is attempted. For publication keywords, all elements found by the selector are used, each element being a separate keyword. But sometimes, the extracted string can be in the form “keywords: word1, word2”, in which case the prefix is removed, case-insensitively and ignoring whitespace, and the keywords split on “,”. The keyword separator could also be “;” or “|”. For abstracts, all elements found by the selector are also extracted and concatenated to a final string, with \n\n (two line breaks) separating the elements. The same is done for fulltexts, but in addition the title, subtitle and abstract selectors are supplied to the fulltext selection method, because the fulltext part must also contain the title and abstract before the full text.

In case of publication fields journalTitle, pubDate and citationsCount, the first element found by the supplied selector is extracted. The date in pubDate may be broken down to subelements “Year”, “Month” and “Day” in the XML. For correspAuthor, complex built-in selectors and extraction logic are needed, as the corresponding authors can be marked and additional data about them supplied in a variety of non-trivial ways.

For the resources Europe PMC, Europe PMC fulltext, Europe PMC mined, PubMed XML, PubMed HTML and PubMed Central, the selector strings specifying how to extract the publication title, keywords etc are currently hardcoded, as the format of these resources is hopefully fairly static. But for the multitude of DOI resources and sites found in Links, the selectors are put in a configuration file (described in Journals YAML), as fairly often the format of a few sites can change.

For webpages and docs, there are no hardcoded selectors and all of them must be specified in a configuration file (described in Webpages YAML).

Rules in YAML

Scraping rules for journal web pages (resolved from DOI resource or in Links) and webpages/docs are specified in YAML configuration files. YAML parsing support is implemented using SnakeYAML [https://bitbucket.org/asomov/snakeyaml].

There are built-in rules for both journal sites (in journals.yaml [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/journals.yaml]) and webpages/docs (in webpages.yaml [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/webpages.yaml]). For adding scraping rules to non-supported sites, the location of a custom configuration file can be specified by the user: for journals using the parameter journalsYaml and for webpages/docs using the parameter webpagesYaml. In addition to adding rules, the default rules can be overridden. To do that, the top-level keys of the rules to be overridden must be repeated in the custom configuration file and the new desired values specified under those keys.

In case of problems in the configuration file – either errors in the YAML syntax itself or mistakes in adhering to the configuration format specified below – the starting of PubFetcher is aborted and a hopefully helpful error message output to the log.

The syntax of regular expressions used in the configuration file is as defined in Java, see documentation of the Pattern class: https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html. If the regex is meant to match a URL, then the string “(?i)^https?://(www.)?” is automatically put in front of the specified regular expression, except when the regular expression already begins with “^”.

Journals YAML

Scraping rules for journal web pages (resolved from DOI resource or in Links), used for filling corresponding publications. To see an example of a journals YAML, the built-in rules file journals.yaml [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/journals.yaml] can be consulted.

One way to find journal web pages that are worth writing rules for is to use the top hosts functionality of the CLI on an existing collection of publications.

A journals YAML configuration file must have three sections (separated by ---): regex, site and javascript.

regex

Entries in this section are in the form “regex: site”. If the specified regular expression “regex” has a match with the URL resolved from DOI resource or the URL of the link taken from Links, then the corresponding value “site” will be the name of the rules used for scraping the web page at the URL. The mentioned URL is the final URL, i.e. the URL obtained after following all potential redirections. The rules for “site” must be present in the next section site. If multiple regular expressions have a match with the URL, then the “site” will be taken from the last such “regex”.

If none of the regular expressions have a match with the URL, then no rules could be found for the site. In that case, the extracted title will have type “webpage” and as content the text value (until the first “|”) of the document’s <title> element and the extracted fulltext will have type “webpage” and as content the entire text parsed from the document. The extracted title and fulltext will fill corresponding publication parts if these parts were requested (as determined by --fetch-part or --not-fetch-part) and conditions described at the end of Publication types are met. No other publication parts besides title and fulltext can potentially be filled if no scraping rules are found for a site.

Different publishers might use a common platform, for example HighWire. In such cases the different keys “regex” for matching article web pages of these different publishers might point to a common “site” with rules for that common platform.

The -scrape-site command of the CLI can be used to test which “site” name is found from loaded configuration files for the supplied URL.

site

Entries in this section are in the form “site: rulesMap”. Each rule name “site” in this section must be specified at least once in the previous section regex. In case of duplicate rule names “site”, the last one will be in effect. The custom configuration file specified using journalsYaml is parsed after the built-in rules in journals.yaml [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/journals.yaml], which means that by using the same rule name in the custom configuration file the corresponding rules of the built-in file can be overridden.

The “rulesMap” must be in the form “ScrapeSiteKey: selector”. The “selector” is the jsoup CSS-like element Selector [https://jsoup.org/apidocs/org/jsoup/select/Selector.html] for selecting one or multiple elements in the document, with what will be done with the extracted content depending on “ScrapeSiteKey”. In case of duplicate “ScrapeSiteKey”, the “selector” from the last one will be in effect.

When writing the “selector”, then care should be taken to not select an element (or parts of it) multiple times. For example, the selector “p” will select a <p> element, but also any potential sub-paragraphs <p> of that element, thus resulting in duplicate extracted content.

Extracted content will have the type “doi” (from Publication types), if the site’s URL was resolved from DOI resource, or it will have the type attached to the link taken from Links. The content could be used to fill the corresponding publication part, but only if the part is requested as determined by --fetch-part or --not-fetch-part and certain other condition are met (as described at the end of Publication types).

The key “ScrapeSiteKey” must be one of the following:

	pmid

	Its value is the selector string for the pmid of the publication. Only the first element found using the selector is extracted and any prefix in the form “pmid:”, case-insensitively and ignoring whitespace, is removed from the element’s text. A PMID is rarely found in journal article web pages.

	pmcid

	Analogous to the pmid selector, except that meant for the pmcid of the publication.

	doi

	Analogous to the pmid selector, except that meant for the doi of the publication. A DOI is quite often found in journal article web pages. Usually a DOI was used to arrive at the site, so the doi selector usually does not provide new information, but it can upgrade the type of the doi part (from “external” to “doi” or “link_oadoi” for example).

	title

	Selector string for the title of the publication. Only the first element found using the selector is extracted. If the title is already final or the selector is empty, then no extraction is attempted (the same is also true for keywords, abstract and fulltext).

	subtitle

	Selector string for a rarely occurring subtitle. Text from the first element found using this selector is appended to the text found using the title selector with separator ” : “.

	keywords

	Selector string for keywords. All elements found using the selector are extracted, each element being a separate keyword.

	keywords_split

	Selector string for keywords. All elements found using the selector are extracted, but differently from the “keywords” selector above, the text in each element can be in the form “keywords: word1, word2”. In that case, the potentially existing prefix “keywords:” is removed, case-insensitively and ignoring whitespace, and the following string split to separate keywords at the separator “,” (and “;” and “|”). If both “keywords” and “keywords_split” are specified, then the “keywords” selector is attempted before.

	abstract

	Selector string for theAbstract. All elements found using the selector are extracted and concatenated to a final string, with \n\n (two line breaks) separating the elements.

	fulltext

	Selector string for fulltext. All elements found using the selector are extracted and concatenated to a final string, with \n\n (two line breaks) separating the elements. The selector must not extract the title and abstract from the site, as when putting together the fulltext of the publication, content extracted using the “title”, “subtitle” and “abstract” selectors are used for the title and abstract that must be present in the beginning of the fulltext part and the “fulltext” selector is used for extracting the remaining full text from the site. Of the remaining full text, everything from introduction to conclusions should be extracted, however most following back matter and metadata, like acknowledgments, author information, author contributions and, most importantly, references, should be excluded. This is currently vaguely defined, but some content should still be included, like descriptions of supplementary materials and glossaries.

	fulltext_src

	Sometimes, the full text of the publication is on a separate web page. So the URL of that separate page should be found out to later visit that page and extract the full text (and possibly other content) from it, using a different set of rules (mapped to by a different “regex”). In some cases, finding the URL of this separate page can be done by some simple transformations of the current URL. The transformation is done by replacing the first substring of the URL that matches the regular expression given in “fulltext_src” with the replacement string given in “fulltext_dst”. If this replacement occurs and results in a new valid URL, then this URL is added to Links (with type equal to the current type) for later visiting.

	fulltext_dst

	The replacement string for the URL substring matched using “fulltext_src”. Must be specified if “fulltext_src” is specified (and vice versa).

	fulltext_a

	Sometimes, the separate web page of the publication’s full text can be linked to somewhere on the current page. This key enables specifying a selector string to extract those links: all elements (usually <a>) found using the selector are extracted and the value of their href attribute added to Links with type equal to the current type, if the value of href is a valid URL.

	pdf_src

	Sometimes, the full text of the publication can be found in a PDF file. The URL of that PDF could be constructed analogously to the “fulltext_src” and “fulltext_dst” system: the first substring of the current URL that matches the regular expression given in “pdf_src” is replaced with the replacement string given in “pdf_dst” and if the result is a new valid URL, it is added to Links. The type (from Publication types) of the link will be the corresponding PDF type of the current type (e.g., type “pdf_doi” corresponds to type “doi”).

	pdf_dst

	The replacement string for the URL substring matched using “pdf_src”. Must be specified if “pdf_src” is specified (and vice versa).

	pdf_a

	Selector string to extract all full text PDF links on the current page. All elements (usually <a>) found using the selector are extracted and the value of their href attribute added to Links, if the value of href is a valid URL. The type (from Publication types) of the link will be the corresponding PDF type of the current type (e.g., type “pdf_doi” corresponds to type “doi”). If possible, the “pdf_a” selector should probably be preferred over “pdf_src” and “pdf_dst”, as sometimes the PDF file can be missing or inaccessible and then the “pdf_a” selector will correctly fail to add any links, but “pdf_src” and “pdf_dst” will add a manually constructed, but non-existing link to Links.

	corresp_author_names

	Selector string for the names of correspAuthor. All elements found using the selector are extracted, each name added as a separate corresponding author.

	corresp_author_emails

	Selector string for the e-mails of correspAuthor. All elements found using the selector are extracted, with e-mail addresses found in href attributes (after the prefix mailto: which is removed). E-mail addresses are added to the names extracted with “corresp_author_names” (in the same order), which means the number of names must match the number of e-mail addresses – if they don’t match, then names are discarded and corresponding authors are only created using the extracted e-mails.

The -scrape-selector command of the CLI can be used to test which selector string from loaded configuration files will be in effect for the supplied URL and “ScrapeSiteKey”.

javascript

As mentioned in Getting a HTML document, either the jsoup [https://jsoup.org/] or HtmlUnit [http://htmlunit.sourceforge.net/] library can be used for fetching a HTML document, with one difference being that HtmlUnit supports executing JavaScript, which jsoup does not. But as running JavaScript is very slow with HtmlUnit, then jsoup is the default and JavaScript is turned on only for sites from which content can’t be extracted otherwise. This section enables the specification of such sites.

The section is made up of a list of regular expression. If the current URL has a match with any of the regexes, then HtmlUnit and JavaScript support is used for fetching the corresponding site, otherwise jsoup (without JavaScript support) is used. The current URL in this case is either the first URL resolved from DOI resource (there might be additional redirection while fetching the site) or the URL of a link from Links (again, this URL might change during fetching, so a different regex might be needed to apply scraping rules to the site at the final URL).

The -scrape-javascript command of the CLI can be used to test if JavaScript will be enabled for the supplied URL.

Webpages YAML

Scraping rules for webpages/docs. To see an example of a webpages YAML, the built-in rules file webpages.yaml [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/webpages.yaml] can be consulted.

In contrast to the journals YAML, there is only one section in the webpages YAML.

The keys in the webpages YAML must be valid Java regular expressions. If a regex has a match with the finalUrl of a webpage or doc, then rules corresponding to that key are applied to extract content from the corresponding fetched document. If multiple regular expressions have a match with the URL, then the rules will be taken from the last such regex key (this enables overriding of built-in rules using the custom configuration file specified by webpagesYaml). If no regular expressions have a match with the URL, then scraping rules for the webpage or doc are no found and the webpage title will be the text value of the document’s <title> element and webpage content will be the entire text parsed from the document.

Each rule under the regex key must be in the form “ScrapeWebpageKey: selector”. The “selector” is the jsoup CSS-like element Selector [https://jsoup.org/apidocs/org/jsoup/select/Selector.html] for selecting one or multiple elements in the document, with what will be done with the extracted content depending on “ScrapeWebpageKey”. In case of duplicate “ScrapeWebpageKey”, the “selector” from the last one will be in effect. When writing the “selector”, then care should be taken to not select an element (or parts of it) multiple times. For example, the selector “p” will select a <p> element, but also any potential sub-paragraphs <p> of that element, thus resulting in duplicate extracted content.

The key “ScrapeWebpageKey” must be one of the following:

	title

	Its value is the selector string for the webpage title or doc title. Only the first element found using the selector is extracted. If the selector is empty, then the title will be empty. If the selector is missing, then the title will be the text content of the <title> element.

	content

	Selector string for the webpage content or doc content. All elements found using the selector are extracted and concatenated to a final string, with \n\n (two line breaks) separating the elements. If the selector is empty, then all content of the fetched document will be discarded and the content will be empty. If the selector is missing, then the fetched document will be automatically cleaned and the resulting formatted text set as the content.

	javascript

	This key enables turning on JavaScript support, similarly to the javascript section in the journals YAML. If its value is true (case-insensitively), then fetching will be done using HtmlUnit and JavaScript support is enabled, in case of any other value fetching will be done using jsoup and executing JavaScript is not supported. In contrast to other “ScrapeWebpageKey” keys, the value of this key is taken from the rule found using matching to the startUrl (and not the finalUrl) of the webpage or doc. If the javascript key is missing (and not set explicitly to false), then JavaScript support is not enabled, but if after fetching the document without JavaScript support there are no scraping rules corresponding to the found finalUrl and the entire text content of the fetched document is smaller than webpageMinLengthJavascript or a <noscript> tag is found in it, or alternatively, scraping rules are present for the found finalUrl and the javascript key has a true value in those rules, then fetching of the document will be repeated, but this time with JavaScript support. If the javascript key is explicitly set to false, then fetching with JavaScript support will not be done in any case.

	license

	Selector string for license. Only the first element found using the selector is extracted.

	language

	Selector string for language. Only the first element found using the selector is extracted.

The -scrape-webpage command of the CLI can be used to print the rules that would be used for the supplied URL.

Testing of rules

Currently, PubFetcher has no tests or any framework for testing its functionality, except for the scraping rule testing described here. Scraping rules should definitely be tested from time to time, because they depend on external factors, like publishers changing the coding of their web pages.

Tests for journals.yaml [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/journals.yaml] are at journals.csv [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/journals.csv] and tests for webpages.yaml [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/webpages.yaml] are at webpages.csv [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/webpages.csv]. If new rules are added to a YAML, then tests covering them should be added to the corresponding CSV. In addition, tests for hardcoded rules of some other resources can be found in the resources/test [https://github.com/edamontology/pubfetcher/tree/master/core/src/main/resources/test] directory. All Resources except Meta are covered.

The test files are in a simplified CSV format. The very first line is always skipped and should contain a header explaining the columns. Empty lines, lines containing only whitespace and lines starting with # are also ignored. Otherwise, each line describes a test and columns are separated using “,”. Any quoting of fields is not possible and not necessary, as fields are assumed to not contain the “,” symbol. Or actually, the number of columns for a given CSV file is fixed in advance, meaning that the last field can contain the “,” symbol as its value is taken to be everything from the separating “,” to the end of the line.

One field must be the publication ID (pmid, pmcid or doi), or URL in case of webpages.csv, defining the entry to be fetched. The other fields are mostly numbers specifying the lengths and sizes that the different entry parts must have. Only comparing the sizes of contents (instead of the content itself or instead of using checksums) is rather simplistic, but easy to specify and probably enough for detecting changes in resources that need correcting. What fields (besides the ID) are present in a concrete test depend on what can be obtained from the corresponding resource.

Possible fields for publications are the following: length of publication parts pmid, pmcid, doi, title, theAbstract and fulltext; size (i.e., number of keywords) of publication parts keywords, mesh, efo and go; length of the entire correspAuthor string (containing all corresponding authors separated by “;”) and length of the journalTitle; number of visitedSites; value of the string pubDate; value of the Boolean oa (1 for true and 0 for false). Every field is a number, except pubDate where the actual date string must be specified (e.g., 2018-08-24). Also, in the tests, the number of visitedSites is not the actual number of sites visited, but the number of links that were found on the tested page and added manually to the publication by the test routine. For webpages.csv, the fields (beside the ID/URL) are the following: length of the webpage title, the webpage content, the software license name and length of the programming language name.

The progress of running tests of a CSV is logged. If all tests pass, then the very last log message will be “OK”. Otherwise, the last message will be the number of mismatches, i.e. number of times an actual value was not equal to the value in the corresponding field of a test. The concrete failed tests can be found by searching for “ERROR” level messages in the log.

Tests can be run using PubFetcher-CLI by supplying a parameter specified in the following table. In addition to the -test parameters there are -print parameters that will fetch the publication or webpage and output it to stdout in plain text and with metadata. This enables seeing the exact content that will be used for testing the entry. Publications are filled using only the specified resource (e.g., usage of the Meta resource is also disabled). Additionally, visitedSites will be filled manually by the -test and -print methods with all links found from the one specified resource (when applicable).

	Parameter

	Parameter args

	Description

	-print-europepmc-xml

	<pmcid>

	Fetch the publication with the given PMCID from the Europe PMC fulltext resource and output it to stdout

	-test-europepmc-xml

	
	Run all tests for the Europe PMC fulltext resource (from europepmc-xml.csv [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/test/europepmc-xml.csv])

	-print-europepmc-html

	<pmcid>

	Fetch the publication with the given PMCID from the Europe PMC HTML resource and output it to stdout

	-test-europepmc-html

	
	Run all tests for the Europe PMC HTML resource (from europepmc-html.csv [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/test/europepmc-html.csv])

	-print-pmc-xml

	<pmcid>

	Fetch the publication with the given PMCID from the PubMed Central resource and output it to stdout

	-test-pmc-xml

	
	Run all tests for the PubMed Central resource (from pmc-xml.csv [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/test/pmc-xml.csv])

	-print-pmc-html

	<pmcid>

	Fetch the publication with the given PMCID from the PubMed Central HTML resource and output it to stdout

	-test-pmc-html

	
	Run all tests for the PubMed Central HTML resource (from pmc-html.csv [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/test/pmc-html.csv])

	-print-pubmed-xml

	<pmid>

	Fetch the publication with the given PMID from the PubMed XML resource and output it to stdout

	-test-pubmed-xml

	
	Run all tests for the PubMed XML resource (from pubmed-xml.csv [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/test/pubmed-xml.csv])

	-print-pubmed-html

	<pmid>

	Fetch the publication with the given PMID from the PubMed HTML resource and output it to stdout

	-test-pubmed-html

	
	Run all tests for the PubMed HTML resource (from pubmed-html.csv [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/test/pubmed-html.csv])

	-print-europepmc

	<pmid>

	Fetch the publication with the given PMID from the Europe PMC resource and output it to stdout

	-test-europepmc

	
	Run all tests for the Europe PMC resource (from europepmc.csv [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/test/europepmc.csv])

	-print-europepmc-mined

	<pmid>

	Fetch the publication with the given PMID from the Europe PMC mined resource and output it to stdout

	-test-europepmc-mined

	
	Run all tests for the Europe PMC mined resource (from europepmc-mined.csv [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/test/europepmc-mined.csv])

	-print-oadoi

	<doi>

	Fetch the publication with the given DOI from the Unpaywall resource and output it to stdout

	-test-oadoi

	
	Run all tests for the Unpaywall resource (from oadoi.csv [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/test/oadoi.csv])

	-print-site

	<url>

	Fetch the publication from the given article web page URL (which can be a DOI link) and output it to stdout. Fetching happens like described in the DOI resource using the built-in rules in journals.yaml [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/journals.yaml] and custom rules specified using journalsYaml.

	-test-site

	
	Run all tests written for the built-in rules journals.yaml [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/journals.yaml] (from journals.csv [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/journals.csv])

	-test-site-regex

	<regex>

	From all tests written for the built-in rules journals.yaml [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/journals.yaml] (from journals.csv [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/journals.csv]), run only those whose site URL has a match with the given regular expression

	-print-webpage

	<url>

	Fetch the webpage from the given URL, using the built-in rules in webpages.yaml [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/webpages.yaml] and custom rules specified using webpagesYaml, and output it to stdout

	-test-webpage

	
	Run all tests written for the built-in rules webpages.yaml [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/webpages.yaml] (from webpages.csv [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/webpages.csv])

	-test-webpage-regex

	<regex>

	From all tests written for the built-in rules webpages.yaml [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/webpages.yaml] (from webpages.csv [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/webpages.csv]), run only those whose URL has a match with the given regular expression

If --fetch-part or --not-fetch-part are specified then only the selected publication parts are filled and printed using the -print methods or tested using the -test methods. Publication fields like correspAuthor are always included in the printout or testing. The printing and testing operations are also affected by the Fetching parameters. If one of the -test methods is used, then the --log parameter should also be used to specify a log file which can later be checked for testing results.

If any larger fetching of content is planned and tests have not been run recently, then tests should be repeated (especially -test-site and -test-webpage) to find outdated rules that need updating. If testing in a different network environment then some tests might fail because of different access rights to journal content.

For testing the effect of custom selectors, the -fetch-webpage-selector operation can be used to specify the desired selectors on the command line. This operation ignores all rules loaded from YAML configuration files.

Programming reference

In addition to command line usage, documented in the section Command-line interface manual, PubFetcher can be used as a library. This section is a short overview of the public interface of the source code that constitutes PubFetcher. Documentation in the code itself is currently sparse.

Package pubfetcher.core.common [https://github.com/edamontology/pubfetcher/tree/master/core/src/main/java/org/edamontology/pubfetcher/core/common]

BasicArgs [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/common/BasicArgs.java] is the abstract class used as base class for FetcherArgs and FetcherPrivateArgs and other command line argument classes in “org.edamontology” packages that use JCommander [http://jcommander.org/] for command line argument parsing and Log4J2 [https://logging.apache.org/log4j/2.x/] for logging. It provides the -h/--help and -l/--log keys and functionality.

FetcherArgs [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/common/FetcherArgs.java] and FetcherPrivateArgs [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/common/FetcherPrivateArgs.java] are classes encapsulating the parameters described in Fetching and Fetching private. Arg [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/common/Arg.java] and Args [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/common/Args.java] are used to store properties of each parameter, like the default value or description string (this comes in useful in EDAMmap [https://github.com/edamontology/edammap], where parameters, including fetching parameters, are displayed and controllable by the user).

IllegalRequestException [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/common/IllegalRequestException.java] is a custom Java runtime exception thrown if there are problems with the user’s request. The exception message can be output back to the user, for example over a web API.

Version [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/common/Version.java] contains the name, URL and version of the program. These are read from the project’s properties file, found at the absolute resource /project.properties [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/project.properties].

The main class of interest for a potential library user is however PubFetcher [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/common/PubFetcher.java]. This class contains most of the public methods making up the PubFetcher API. Currently, it is also the only class documented using Javadoc. Some of the methods (those described in Publication IDs and Miscellaneous) can be called from PubFetcher-CLI.

Package pubfetcher.core.db [https://github.com/edamontology/pubfetcher/tree/master/core/src/main/java/org/edamontology/pubfetcher/core/db] (and subpackages)

The Database class [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/db/Database.java] can be used to initialise a database file, put content to or get or remove content from the database file, get IDs contained or ask if an ID is contained in the database file or compact a database file. The class abstracts away the currently used underlying database system (MapDB [http://www.mapdb.org/]). The structure of the database is described in the Database section of the output documentation. Some methods can be called from PubFetcher-CLI, these are described in the corresponding Database section.

DatabaseEntry [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/db/DatabaseEntry.java] is the base class for Publication and Webpage. It contains the methods “canFetch” and “updateCounters” whose logic is explained in Can fetch. DatabaseEntryType [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/db/DatabaseEntryType.java] specifies whether a given DatabaseEntry is a publication, webpage or doc.

Publication [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/db/publication/Publication.java], Webpage [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/db/webpage/Webpage.java] and most other classes in the “pubfetcher.core.db” packages are the entities stored in the database. These classes contain methods to get and set the value of their fields and methods to output content fields in plain text, HTML or JSON, with or without metadata fields. Their structure is explained in Contents.

The PublicationIds class [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/db/publication/PublicationIds.java] encapsulates publication IDs that can be stored in the database. Its structure is explained in IDs of publications.

The PublicationPartType enumeration [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/db/publication/PublicationPartType.java] of possible publication types is explained in Publication types.

Package pubfetcher.core.fetching [https://github.com/edamontology/pubfetcher/tree/master/core/src/main/java/org/edamontology/pubfetcher/core/fetching]

Fetcher [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/fetching/Fetcher.java] is the main class dealing with fetching. Its logic is explained in Fetching logic.

Fetcher contains the public method “getDoc”, which is described in Getting a HTML document. The “getDoc” method, but also the “getWebpage” method and the “updateCitationsCount” method can be called from PubFetcher-CLI as seen in Print a web page and Update citations count.

The Fetcher methods “initPublication” and “initWebpage” must be used to construct a Publication and Webpage. Then, the methods “getPublication” and “getWebpage” can be used to fetch the Publication and Webpage. But instead of these “init” and “get” methods, the “getPublication”, “getWebpage” and “getDoc” methods of class PubFetcher [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/common/PubFetcher.java] should be used, when possible.

Because executing JavaScript is prone to serious bugs in the used HtmlUnit [https://htmlunit.sourceforge.io/] library, fetching a HTML document with JavaScript support turned on is done in a separate JavaScriptThread [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/fetching/JavascriptThread.java], that can be killed if it gets stuck.

The HtmlMeta class [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/fetching/HtmlMeta.java] is explained in Meta and the Links class [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/fetching/Links.java] in Links.

Automatic cleaning and formatting of web pages without scraping rules has been implemented in the CleanWebpage class [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/fetching/CleanWebpage.java].

The “pubfetcher.core.fetching” package also contains the classes related to testing: FetcherTest [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/fetching/FetcherTest.java] and FetcherTestArgs [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/fetching/FetcherTestArgs.java]. These are explained in Testing of rules.

Package pubfetcher.core.scrape [https://github.com/edamontology/pubfetcher/tree/master/core/src/main/java/org/edamontology/pubfetcher/core/scrape]

Classes in this package deal with scraping, as explained in the Scraping rules section.

The public methods of the Scrape class [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/scrape/Scrape.java] can be called from PubFetcher-CLI using the parameters shown in Scrape rules.

Package pubfetcher.cli [https://github.com/edamontology/pubfetcher/tree/master/cli/src/main/java/org/edamontology/pubfetcher/cli]

The command line interface of PubFetcher, that is PubFetcher-CLI, is implemented in package “pubfetcher.cli”. Its usage is the topic of the first section Command-line interface manual.

The functionality of PubFetcher-CLI can be extended by implementing new operations in a new command line tool, where the public “run” method of the PubFetcherMethods class [https://github.com/edamontology/pubfetcher/blob/master/cli/src/main/java/org/edamontology/pubfetcher/cli/PubFetcherMethods.java] can then be called to pull in all the functionality of PubFetcher-CLI. One of the main reasons to do this is to implement some new way of getting publication IDs and webpage/doc URLs. These IDs and URLs can then be passed to the “run” method of PubFetcherMethods as the lists “externalPublicationIds”, “externalWebpageUrls” and “externalDocUrls”. One example of such functionality extension is the EDAMmap-Util [https://github.com/edamontology/edammap/tree/master/util] tool (see its UtilMain class [https://github.com/edamontology/edammap/blob/master/util/src/main/java/org/edamontology/edammap/util/UtilMain.java]).

Configuration resources/log4j2.xml [https://github.com/edamontology/pubfetcher/blob/master/cli/src/main/resources/log4j2.xml]

The PubFetcher-CLI Logging configuration file log4j2.xml [https://github.com/edamontology/pubfetcher/blob/master/cli/src/main/resources/log4j2.xml] specifies how logging is done and how the Log file will look like.

Ideas for future

Sometimes ideas are emerging. These are written down here for future reference. A written down idea is not necessarily a good idea, thus not all points here should be implemented.

Structure changes

	Make publication fulltext more structured (currently it is just one big string). For example, “Introduction”, “Methods”, etc could all be separate parts. Also, references could be added as a separate part (currently references are excluded altogether). It should be investigated, how feasible this is. For PDFs it is not, probably.

	Treat publication fields (like oa or journalTitle) more akin to publication parts. Like, journalTitle could also be final or not, etc.

	Additional metadata about a publication could be supported. Most importantly - authors (with first name, last name, orcid, affiliation, email, etc).

	Webpages could also have an extra field about tags, for example those that occur in standard registries or code repositories. Analogous to the keywords of publications.

Logic changes

	Currently, a publication is considered final when its title, abstract and fulltext are final. Keywords are not required for this, as they are often missing. But this means that, if we for some reason fail to fetch author-assigned keywords, or those keywords are added to the publication at some later date, then we will not try to fetch these keywords at some later date if the publication is already final. Note that, adding keywords to the finality requirement is probably still not a good idea.

	Currently, content found in meta tags of article web pages can be extracted by the Meta class (as described in Meta). However, all content extracted this way will have a non-final publication part type (see Publication types). As these tags are simply part of the HTML source, then for some of these tags (where we are certain of the quality of its content for the given site) the possibility to use explicit scraping rules (e.g. using a ScrapeSiteKey called “keywords_meta”) in journals.yaml could be added. This way, content extracted from these tags (using a scraping rule) can have the final publication part type of “doi”.

Extra sources

	The ouput of the Europe PMC search API has <fullTextUrlList> and PubMed has the LinkOut service with links to resources with full text available. But it should be determined if these provide extra value, i.e. find links not found with current resources.

	DOI Content Negotiation [https://citation.crosscite.org/docs.html] could be used as extra source of metadata. But again, it should be determined if this would provide extra value.

	Same for Open Access Button [https://openaccessbutton.org/].

Extra extraction

	Some article web pages state if the article is Open Source somewhere in the HTML (e.g., https://gsejournal.biomedcentral.com/articles/10.1186/1297-9686-44-9). So the ScrapeSiteKey “oa” could be added to extract this information using rules in journals.yaml.

	The publication field pubDate is currently extracted from the Europe PMC and PubMed XML resources. But it could also potentially be found at Europe PMC fulltext and PubMed Central (documentation at https://www.ncbi.nlm.nih.gov/pmc/pmcdoc/tagging-guidelines/article/tags.html#el-pubdate).

	Meta tags are currently not used to fill publication fields. E.g., the <meta> tag “citation_journal_title” could be used for journalTitle.

Database

	With a new release of PubFetcher, the structure of the database content might change (in classes of org.edammap.pubfetcher.core.db). Currently, no database migration is supported, which means that content of existing database files will be become unreadable in such case. If that content is still required, it would need to be refetched to a new database file (created with the new version of PubFetcher). So implement support for migration of database content. Maybe through JSON.

	Is the separation of functionally equivalent webpages and docs really necessary?

	If performance or reliability of MapDB should become and issue, then alternative key-value stores, like LMDB [https://github.com/lmdbjava/] or Chronicle-Map [https://github.com/OpenHFT/Chronicle-Map] could be investigated.

Scraping

	The current quick and dirty and uniform approach for article web page scraping could be replaced with APIs for some publishers that provide one (there’s a sample list at https://libraries.mit.edu/scholarly/publishing/apis-for-scholarly-resources/).

	Reuse of scraping rules from the Zotero [https://www.zotero.org/] reference management software could be attempted, either by using the JavaScript translators [https://github.com/zotero/translators/] directly or through the translation server [https://github.com/zotero/translation-server].

	Currently the CSS-like jsoup selector is used for extraction. But it has its limitations and sometimes the use of XPath could be better, for example when selecting parents is required.

	There is an extension to XPath called OXPath [http://www.oxpath.org/] which highlights another problem: more web pages might start to require some JavaScript interactions before any content can be obtained.

	The entire original web page should also be saved when scraping. Then, the web page would not need re-fetching if some scraping rules are changed or the actual source web page examined at some later date when debugging.

	The robots.txt should be respected.

Meta

	Currently, only scraping rules are tested. But proper unit testing (with JUnit for example) should also be implemented.

	Do comment more in code.

	Also, the whole API should be documented with Javadoc (currently only PubFetcher [https://github.com/edamontology/pubfetcher/blob/master/core/src/main/java/org/edamontology/pubfetcher/core/common/PubFetcher.java] is covered).

	Make code more robust and secure.

	Deploy the PubFetcher library to a remote repository [https://mvnrepository.com/], possibly Maven Central [https://search.maven.org/], mention this in INSTALL.md [https://github.com/edamontology/pubfetcher/blob/master/INSTALL.md].

Misc new stuff

	Configurable proxy support for network code could be added.

	The querying capabilities of PubFetcher are rather rudimentary. Investigate if it can be improved using some existing library, like JXPath [https://commons.apache.org/proper/commons-jxpath/] or CQEngine [https://github.com/npgall/cqengine]. Maybe a change in the database system would also be required.

	Maybe an interactive shell to type PubFetcher commands in could be implemented.

	A web app and API could be implemented. Look at EDAMmap-Server [https://github.com/edamontology/edammap/tree/master/server] as an example. If done, then the full text of non OA articles should probably not be exposed.

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 PubFetcher documentation

 		
 What is PubFetcher?

 		
 Overview

 		
 Outline

 		
 Install

 		
 Quickstart

 		
 Repo

 		
 Support

 		
 License

 		
 Command-line interface manual

 		
 Logging

 		
 General parameters

 		
 Fetching

 		
 Fetching private

 		
 Simple one-off operations

 		
 Database

 		
 Print a web page

 		
 Scrape rules

 		
 Publication IDs

 		
 Miscellaneous

 		
 Pipeline of operations

 		
 Add IDs

 		
 Filter IDs

 		
 Sort IDs

 		
 Limit IDs

 		
 Remove from database by IDs

 		
 Output IDs

 		
 Get content

 		
 Get content modifiers

 		
 Filter content

 		
 Filter publications

 		
 Filter publication parts

 		
 Filter webpages and docs

 		
 Sort content

 		
 Limit content

 		
 Update citations count

 		
 Put to database

 		
 Remove from database

 		
 Output

 		
 Output modifiers

 		
 Test

 		
 Examples

 		
 Operations with IDs

 		
 Get content

 		
 Loading content

 		
 Limit fetching/loading

 		
 Fetch only some publication parts

 		
 Converting IDs

 		
 Filtering content

 		
 Terminal operations

 		
 Output

 		
 Notes

 		
 Limitations

 		
 Output

 		
 Database

 		
 JSON output

 		
 Common

 		
 IDs

 		
 Contents

 		
 HTML and plain text output

 		
 Log file

 		
 Analysing logs

 		
 Fetching logic

 		
 Low-level methods

 		
 Getting a HTML document

 		
 Getting a PDF document

 		
 Selecting from the returned HTML document

 		
 Cleaning the returned HTML document

 		
 Multithreaded fetching

 		
 Fetching publications

 		
 Resources

 		
 Publication types

 		
 Publication parts

 		
 Fetching webpages and docs

 		
 Can fetch

 		
 Scraping rules

 		
 Scraping

 		
 Rules in YAML

 		
 Journals YAML

 		
 Webpages YAML

 		
 Testing of rules

 		
 Programming reference

 		
 Package pubfetcher.core.common

 		
 Package pubfetcher.core.db (and subpackages)

 		
 Package pubfetcher.core.fetching

 		
 Package pubfetcher.core.scrape

 		
 Package pubfetcher.cli

 		
 Configuration resources/log4j2.xml

 		
 Ideas for future

 		
 Structure changes

 		
 Logic changes

 		
 Extra sources

 		
 Extra extraction

 		
 Database

 		
 Scraping

 		
 Meta

 		
 Misc new stuff

_static/up-pressed.png

_static/up.png

